Solveeit Logo

Question

Question: Four charges are placed on corners of a square as shown in figure having side of 5 cm. If *Q* is one...

Four charges are placed on corners of a square as shown in figure having side of 5 cm. If Q is one micro coulomb, then electric field intensity at centre will be

A

1.02×107N/C1.02 \times 10^{7}N/Cupwards

B

2.04×107N/C2.04 \times 10^{7}N/Cdownwards

C

2.04×107N/C2.04 \times 10^{7}N/Cupwards

D

1.02×107N/C1.02 \times 10^{7}N/Cdownwards

Answer

1.02×107N/C1.02 \times 10^{7}N/Cupwards

Explanation

Solution

EC>EA|E_{C} ⥂ | > |E_{A} ⥂ | so resultant of EC&EAE_{C}\& E_{A} is ECA=ECEAE_{CA} = E_{C} - E_{A}directed toward Q

Also EB>ED|E_{B}| > |E_{D} ⥂ |so resultant of EBE_{B}and EDE_{D} i.e.

EBD=EBEDE_{BD} = E_{B} - E_{D} directed toward – 2Q charge hence Net electric field at centre is

E=(ECA)2+(EBD)2E = \sqrt{\left( E_{CA} \right)^{2} + \left( E_{BD} \right)^{2}} .… (i)

By proper calculations

EA=9×109×106(52×102)2=0.72×107N/CEB=9×109×2×106(52×102)2=1.44×107N/C|E_{A}| = 9 \times 10^{9} \times \frac{10^{- 6}}{\left( \frac{5}{\sqrt{2}} \times 10^{- 2} \right)^{2}} = 0.72 \times 10^{7}N ⥂ / ⥂ C|E_{B}| = 9 \times 10^{9} \times \frac{2 \times 10^{- 6}}{\left( \frac{5}{\sqrt{2}} \times 10^{- 2} \right)^{2}} = 1.44 \times 10^{7}N ⥂ / ⥂ C;

EC=9×109×2×106(52×102)2=1.44×107N/C|E_{C}| = 9 \times 10^{9} \times \frac{2 \times 10^{- 6}}{\left( \frac{5}{\sqrt{2}} \times 10^{- 2} \right)^{2}} = 1.44 \times 10^{7}N ⥂ / ⥂ C

ED=9×109×106(52×102)2=0.72×107N/C|E_{D}| = 9 \times 10^{9} \times \frac{10^{- 6}}{\left( \frac{5}{\sqrt{2}} \times 10^{- 2} \right)^{2}} = 0.72 \times 10^{7}N ⥂ / ⥂ C; So,

ECA=ECEA=0.72×107N/C|E_{CA}| = |E_{C}| - |E_{A}| = 0.72 \times 10^{7}N/Cand

EBD=EBED=0.72×107N/C.|E_{BD}| = |E_{B}| - |E_{D}| = 0.72 \times 10^{7}N ⥂ / ⥂ C. Hence from

equation – (i) E=1.02×107N/CE = 1.02 \times 10^{7}N ⥂ / ⥂ Cupwards