Solveeit Logo

Question

Mathematics Question on Sequence and series

Four arithmetic means between 10-10 and 2525 are inserted. Then the 5th5^{th} term in the series is

A

1111

B

1919

C

1717

D

1818

Answer

1818

Explanation

Solution

Let A1,A2,A3{{A}_{1}},{{A}_{2}},{{A}_{3}} and A4{{A}_{4}} are inserted as arithmetic mean between
10-10 and 25.25.
Then, 10,A1,A2,A3,A425-10,\,{{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\,\,25 are in AP.
Now, Ar=a+r(ba)r+1{{A}_{r}}=a+\frac{r(b-a)}{r+1}
\therefore Au=10+4(35)5{{A}_{u}}=-10+\frac{4(35)}{5}
=10+28=-10+28 =18=18
\therefore Fifth term is 18.
Alternate l=Tn=a+(n1)dl={{T}_{n}}=a+(n-1)\,\,d 25=10+(61)d25=-10+(6-1)\,d
35=5d35=5d
\Rightarrow d=7d=7
Then, T5=a+4d{{T}_{5}}=a+4d
=10+4(7)=10+28=-10+4(7)=-10+28 =18=18