Solveeit Logo

Question

Mathematics Question on Slope of a line

Form the differential equation of y=ae3xcos⁡(x+b) Where y′=dydx and yn=d2ydx2?

A

(A) y′′−6y′+10y=0

B

(B) y′′−6y′−10y=0

C

(C) y′′+6y′−10y=0

D

(D) y′′+6y′+10y=0

Answer

(C) y′′+6y′−10y=0

Explanation

Solution

Explanation:
Given,y=ae3xcos⁡(x+b)There are two constants a and b so differentiate two times Differentiating wr.t x,We get,y′=3ae3xcos⁡(x+b)−ae3xsin⁡(x+b)⇒y′=3y−ae3xsin⁡(x+b)⇒ae3xsin⁡(x+b)=3y−y′Differentiating again w.r.t x,We get,3ae3xsin⁡(x+b)+ae3xcos⁡(x+b)=3y′−y′′⇒3(3y−y′)+y−3y′−yn=0⇒9y−3y′+y−3y′−yn=0⇒y′′+6y′−10y=0Hence, the correct option is (C).