Question
Mathematics Question on Slope of a line
Form the differential equation of y=ae3xcos(x+b) Where y′=dydx and yn=d2ydx2?
A
(A) y′′−6y′+10y=0
B
(B) y′′−6y′−10y=0
C
(C) y′′+6y′−10y=0
D
(D) y′′+6y′+10y=0
Answer
(C) y′′+6y′−10y=0
Explanation
Solution
Explanation:
Given,y=ae3xcos(x+b)There are two constants a and b so differentiate two times Differentiating wr.t x,We get,y′=3ae3xcos(x+b)−ae3xsin(x+b)⇒y′=3y−ae3xsin(x+b)⇒ae3xsin(x+b)=3y−y′Differentiating again w.r.t x,We get,3ae3xsin(x+b)+ae3xcos(x+b)=3y′−y′′⇒3(3y−y′)+y−3y′−yn=0⇒9y−3y′+y−3y′−yn=0⇒y′′+6y′−10y=0Hence, the correct option is (C).