Solveeit Logo

Question

Question: Form the differential equation from \( a{x^2} + b{y^2} = 1 \) (A) \( xy{y_2} + x{y_1}^2 - y{y_1} ...

Form the differential equation from ax2+by2=1a{x^2} + b{y^2} = 1
(A) xyy2+xy12yy1=0xy{y_2} + x{y_1}^2 - y{y_1} = 0
(B) xyy2xy12yy1=0xy{y_2} - x{y_1}^2 - y{y_1} = 0
(C) xyy2+xy12+yy1=0xy{y_2} + x{y_1}^2 + y{y_1} = 0
(D) xyy2xy12+yy1=0xy{y_2} - x{y_1}^2 + y{y_1} = 0

Explanation

Solution

Hint : In this question, we have to derive the differential equation from the given expression. There are two variables given in the expression xx and yy . According to the question, the differential equation has to be a second order differential equation in terms of yy which means that we have to differentiate the given expression two times w.r.t. xx .
We know that dydx=y1\dfrac{{dy}}{{dx}} = {y_1}
ddx(dydx)=y2\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = {y_2}
And,
ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}

Complete step-by-step answer :
Given: The expression given is-
ax2+by2=1a{x^2} + b{y^2} = 1
Where a and ba{\text{ and b}} are arbitrary constants.
In order to find the differential form of this expression we have to do the derivation. Since there are 2 arbitrary constants in the expression and to remove them, we have to do the differentiation twice.
So, differentiating both sides of the expression w.r.t. xx we get,
ddx(ax2+by2)=ddx(1) addx(x2)+bddx(y2)=0 \dfrac{d}{{dx}}\left( {a{x^2} + b{y^2}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\\ a\dfrac{d}{{dx}}\left( {{x^2}} \right) + b\dfrac{d}{{dx}}\left( {{y^2}} \right) = 0
Solving this we get,
a×2x+b×2y×dydx=0a \times 2x + b \times 2y \times \dfrac{{dy}}{{dx}} = 0
We can write the first derivative dydx=y1\dfrac{{dy}}{{dx}} = {y_1} in the equation. So, we get,
2ax+2byy1=0 2(ax+byy1)=0 2ax + 2by{y_1} = 0\\\ 2\left( {ax + by{y_1}} \right) = 0
We can write this as-
ax+byy1=0ax + by{y_1} = 0
This is our first equation.
Now differentiating both sides again w.r.t. xx we get,
ddx(ax+byy1)=0 addx(x)+bddx(yy1)=0 \dfrac{d}{{dx}}\left( {ax + by{y_1}} \right) = 0\\\ a\dfrac{d}{{dx}}\left( x \right) + b\dfrac{d}{{dx}}\left( {y{y_1}} \right) = 0
We can write
ddx(yy1)=yddx(y1)+y1ddx(y) =yddx(dydx)+y1(dydx) \dfrac{d}{{dx}}\left( {y{y_1}} \right) = y\dfrac{d}{{dx}}\left( {{y_1}} \right) + {y_1}\dfrac{d}{{dx}}\left( y \right)\\\ = y\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) + {y_1}\left( {\dfrac{{dy}}{{dx}}} \right)
We know that dydx=y1\dfrac{{dy}}{{dx}} = {y_1} and
ddx(dydx)=d2ydx2 =y2 \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{{d^2}y}}{{d{x^2}}}\\\ = {y_2}
So, ddx(yy1)=y×y2+y1×y1 =yy2+y12 \dfrac{d}{{dx}}\left( {y{y_1}} \right) = y \times {y_2} + {y_1} \times {y_1}\\\ = y{y_2} + {y_1}^2
Substituting these values in the equation we get,
a×1+b×(yy2+y12)=0 a+b(yy2+y12)=0 a=b(yy2+y12) a \times 1 + b \times \left( {y{y_2} + {y_1}^2} \right) = 0\\\ a + b\left( {y{y_2} + {y_1}^2} \right) = 0\\\ a = - b\left( {y{y_2} + {y_1}^2} \right)
Putting this value of aa in the first equation we get,
\-b(yy2+y12)x+byy1=0 yy1=(yy2+y12)x yy1=xyy2+xy12 \- b\left( {y{y_2} + {y_1}^2} \right)x + by{y_1} = 0\\\ y{y_1} = \left( {y{y_2} + {y_1}^2} \right)x\\\ y{y_1} = xy{y_2} + x{y_1}^2
We can write this equation as-
xyy2+xy12yy1=0xy{y_2} + x{y_1}^2 - y{y_1} = 0
Therefore, the differential equation is xyy2+xy12yy1=0xy{y_2} + x{y_1}^2 - y{y_1} = 0
So, the correct answer is “Option A”.

Note : The number of times we have to do the differentiation depends upon the numbers of arbitrary constants present in the expression. In the second-order differential equation, the highest order of the equation is 2. The order of the derivative is defined as the number of times of the derivation of the variable.
For example, the order of the differential d3ydx3\dfrac{{{d^3}y}}{{d{x^3}}} is 3.