Solveeit Logo

Question

Mathematics Question on Differential equations

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b:y=ex(acosx+bsinx)y=e^x(a\cos x+b\sin x)

Answer

y=ex(acosx+bsinx)y=e^x(a\cos x+b\sin x)...(1)
Differentiating both sides with respect to x,we get:
y=ex(acosx+bsinx)+ex(asinx+bcosx)y'=e^x(a\cos x+b\sin x)+e^x (-a \sin x+b\cos x)

y=ex[(a+b)cosx(ab)sinx]\Rightarrow y'=e^x\bigg[(a+b)\cos x-(a-b)\sin x\bigg]...(2)
Again, differentiating with respect to x, we get:

y=ex[(a+b)cosx(ab)sinx]+ex[(a+b)sinx(ab)cosx]y''=e^x\bigg[(a+b)\cos x-(a-b)\sin x\bigg]+e^x\bigg[-(a+b)\sin x-(a-b)\cos x\bigg]

y=ex[2bcosx2asinx]y''=e^x\bigg[2b\cos x-2a \sin x\bigg]

y=2ex[bcosxasinx]y''=2e^x[b\cos x-a\sin x]

y2=ex(bcosxasinx)\Rightarrow \frac{y''}{2}=e^x(b\cos x- a\sin x)...(3)

Adding equations(1)and(3),we get:

y+y2=ex[(a+b)cosx(ab)sinx]y+\frac{y''}{2}=e^x[(a+b)\cos x-(a-b)\sin x]

\Rightarrow y+y2=yy+\frac{y''}{2}=y'

\Rightarrow 2y+y''=2y'

\Rightarrow y''-2y'+2y=0

This is the required differential equation of the given curve.