Question
Mathematics Question on Differential equations
Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b:y=ex(acosx+bsinx)
Answer
y=ex(acosx+bsinx)...(1)
Differentiating both sides with respect to x,we get:
y′=ex(acosx+bsinx)+ex(−asinx+bcosx)
⇒y′=ex[(a+b)cosx−(a−b)sinx]...(2)
Again, differentiating with respect to x, we get:
y′′=ex[(a+b)cosx−(a−b)sinx]+ex[−(a+b)sinx−(a−b)cosx]
y′′=ex[2bcosx−2asinx]
y′′=2ex[bcosx−asinx]
⇒2y′′=ex(bcosx−asinx)...(3)
Adding equations(1)and(3),we get:
y+2y′′=ex[(a+b)cosx−(a−b)sinx]
⇒ y+2y′′=y′
⇒ 2y+y''=2y'
⇒ y''-2y'+2y=0
This is the required differential equation of the given curve.