Solveeit Logo

Question

Mathematics Question on Differential equations

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b:y=ae3x+be2xy=ae^{3x}+be^{-2x}

Answer

y=ae3x+be2xy=ae^{3x}+be^{-2x}...(1)
Differentiating both sides with respect to x, we get:

y=3ae3x2be2xy'=3ae^{3x}-2be^{-2x}...(2)

Again, differentiating both sides with respect to x, we get:

y=9ae3x+4be2x...(3)y''=9ae^{3x}+4be^{-2x}...(3)

Now, multiplying equation(1)with equation(2)and adding to equation(2), we get:

(2ae3x+2be2x)+(3ae3x2be2x)=2y+y(2ae^{3x}+2be^{-2x})+(3ae^{3x}-2be^{-2x})=2y+y'

5ae3x=2y+y\Rightarrow 5ae^{3x}=2y+y'
ae3x=2y+y5\Rightarrow ae^{3x}=\frac{2y+y'}{5}
Now, multiplying equation(1)with equation(3)and subtracting equation(2)from it, we get:

(3ae3x+3be-2x)-(3ae3x-2be-2x)=3y-y'
\Rightarrow 5be-2x=3y-y'
2x=3yy5\Rightarrow -2x=\frac{3y-y'}{5}

Substituting the values of ae3x and be-2x in equation(3),we get:

y=9.(2y+y)5+4(3yy)5y''=9.\frac{(2y+y')}{5}+4\frac{(3y-y')}{5}

y=18y+9y5+12y4y5\Rightarrow y'' =\frac{18y+9y'}{5}+\frac{12y-4y'}{5}

y=30y+5y5\Rightarrow y''=\frac{30y+5y}{5}

\Rightarrow y''=6y+y'

\Rightarrow y''-y'-6y=0

This is the required differential equation of the given curve.