Question
Question: For \(x_{1},x_{2},y_{1},y_{2} \in R,\) if \(0 < x_{1} < x_{2},y_{1} = y_{2}\) and \(z_{1} = x_{1} +...
For x1,x2,y1,y2∈R, if 0<x1<x2,y1=y2 and
z1=x1+iy1,z2=x2+iy2, and z3=21(z1+z2), then z1,z2 and z3 satisfy
A
∣z1∣=∣z2∣=∣z3∣
B
∣z1∣<∣z2∣<∣z3∣
C
∣z1∣>∣z2∣>∣z3∣
D
∣z1∣<∣z3∣<∣z2∣
Answer
∣z1∣<∣z3∣<∣z2∣
Explanation
Solution
Sol. 0<x1<x2,y1=y2 (Given)
∣z1∣=x12+y12,∣z2∣=x22+y22⇒∣z2∣>∣z1∣⇒∣z3∣=2∣z1+z2∣ =(2x1+x2)2+(2y1+y2)2 (2x1+x2)2+y12<∣z2∣>∣z1∣. Hence, ∣z1∣<∣z3∣<∣z2∣