Solveeit Logo

Question

Question: For x Ī R and a continuous function ƒ, let I<sub>1</sub> = \(\int_{\sin^{2}t}^{1 + \cos^{2}t}{}\)x ...

For x Ī R and a continuous function ƒ, let

I1 = sin2t1+cos2t\int_{\sin^{2}t}^{1 + \cos^{2}t}{}x ƒ {(2 – x)} dx and I2 = sin2t1+cos2t\int_{\sin^{2}t}^{1 + \cos^{2}t}{}ƒ{x(2 – x)} dx. Then I1/I2 is -

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

I1 = sin2t1+cos2t\int_{\sin^{2}t}^{1 + \cos^{2}t}{}x ƒ {(2 – x)} dx

= I1 = sin2t1+cos2t\int_{\sin^{2}t}^{1 + \cos^{2}t}{} (2 – x) ƒ(x(2 – x)) dx = 2 . I2 – I1

Ž 2I1 = 2I2 Ž I1I2\frac{I_{1}}{I_{2}} = 1.