Question
Mathematics Question on Functions
For x∈R,x=0,x=1, let f0(x)=1−x1 and fn+1(x)∣=f0(fn(x)),n=0,1,2,... Then the value of f100(3)+f1(32)+f2(23) is equal to :
A
38
B
35
C
34
D
31
Answer
35
Explanation
Solution
The correct answer is B:35
f0(x)=1−x1 for x∈R,x=0,x=1
fn+1(x)=f0(fn(x)),n=0,1,2......
Then, f1(x)=f0+1(x)=f0(f0(x))=1−1+−x11=xx−1
f2(x)=f1+1(x)=f0(f1(x))=1−xx−11=x
f3(x)=f2+1(x)=f0(f2(x))=f0(x)=1−x1
f4(x)=f3+1(x)=f0(f0(x))=xx−1
∴f0=f3=f6=.........=1−x1
f1=f4=f7=f10=......=xx−1
f2=f5=f8=.......=x
f100(3)=33−1=32f1(32)=3232−1=−21
f2(23)=23
∴f100(3)+f1(32)+f2(23)=35