Solveeit Logo

Question

Mathematics Question on Functions

For xR,x0,x1,x \, \in \, R , x \neq 0, x \neq 1, let f0(x)=11xf_0(x) = \frac{1}{1-x} and fn+1(x)=f0(fn(x)),n=0,1,2,...f_{n+1} (x) | = f_0 (f_n(x)), n = 0 , 1 , 2 , ... Then the value of f100(3)+f1(23)+f2(32)f_{100}(3) + f_1 \left(\frac{2}{3} \right) + f_2 \left( \frac{3}{2} \right) is equal to :

A

83\frac{8}{3}

B

53\frac{5}{3}

C

43\frac{4}{3}

D

13\frac{1}{3}

Answer

53\frac{5}{3}

Explanation

Solution

The correct answer is B:53\frac{5}{3}
f0(x)=11xf_0(x)=\frac{1}{1-x} for xRx∈R,x0,x1x≠0,x≠1
fn+1(x)=f0(fn(x)),n=0,1,2......f_{n+1}(x)=f_0(f_n(x)),n=0,1,2......
Then, f1(x)=f0+1(x)=f0(f0(x))=1111+x=x1xf_{1} \left(x\right)=f_{0+1}\left(x\right)=f_{0}\left(f_{0}\left(x\right)\right)=\frac{1}{1-\frac{1}{1+-x}}=\frac{x-1}{x}
f2(x)=f1+1(x)=f0(f1(x))=11x1x=xf_{2}\left(x\right)=f_{1+1}\left(x\right)=f_{0}\left(f_{1}\left(x\right)\right)=\frac{1}{1-\frac{x-1}{x}}=x
f3(x)=f2+1(x)=f0(f2(x))=f0(x)=11xf_{3}\left(x\right)=f_{2+1}\left(x\right)=f_{0}\left(f_{2}\left(x\right)\right)=f_{0}\left(x\right)=\frac{1}{1-x}
f4(x)=f3+1(x)=f0(f0(x))=x1xf_{4}\left(x\right)=f_{3+1}\left(x\right)=f_{0}\left(f_{0}\left(x\right)\right)=\frac{x-1}{x}
f0=f3=f6=.........=11x\therefore f_{0}=f_{3}=f_{6}=.........=\frac{1}{1-x}
f1=f4=f7=f10=......=x1xf_{1}=f_{4}=f_{7}=f_{10}=......=\frac{x-1}{x}
f2=f5=f8=.......=xf_{2}=f_{5}=f_{8}=.......=x
f100(3)=313=23f1(23)=23123=12f_{100}\left(3\right)=\frac{3-1}{3}=\frac{2}{3}f_{1}\left(\frac{2}{3}\right)=\frac{\frac{2}{3}-1}{\frac{2}{3}}=-\frac{1}{2}
f2(32)=32f_{2}\left(\frac{3}{2}\right)=\frac{3}{2}
f100(3)+f1(23)+f2(32)=53\therefore f_{100}\left(3\right)+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)=\frac{5}{3}
element of