Question
Question: For \(x \in R\),\(x \ne 0\), \(y\) is differentiable function such that \(x\int\limits_1^x {y(t)dt} ...
For x∈R,x=0, y is differentiable function such that x1∫xy(t)dt =(x+1) 1∫xty(t)dt, then y(x)equals:
A. Cx3ex1
B. x2Cex−1
C. xCex−1
D. x3Cex−1
Solution
In this question, we are given that x∈R,x=0, y is a differentiable function. Here we should take differential with respect to x of
x1∫xy(t)dt =(x+1) 1∫xty(t)dt and then we will find y(x) by this equation.
Complete step-by-step answer:
We are given that
x∈R,x=0, y is differentiable function such that x1∫xy(t)dt =(x+1) 1∫xty(t)dt
We can also write it as
$$$$$x\int\limits_1^x {y(t)dt} = x\int\limits_1^x {ty(t)dt} + \int\limits_1^x {ty(t)dt} - - - - - - (1)Aswehavetofindy(x)wehavetoproceedwith(1),Takingdifferentialofboththesideswithrespecttoxof(1)\dfrac{d}{{dx}}(x\int\limits_1^x {y(t)dt)} = \dfrac{d}{{dx}}x\int\limits_1^x {ty(t)dt} + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} Nowusingtheproductrule,\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}Weget,\int\limits_1^x {y(t)dt.\dfrac{{dx}}{{dx}} + x\dfrac{{d\int\limits_1^x {y(t)dt} }}{{dx}} = \int\limits_1^x {ty(t)dt\dfrac{{dx}}{{dx}}} } + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} .x + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} Nowweknowthat\dfrac{{dx}}{{dx}} = 1,\dfrac{{d\int {f(y)} }}{{dx}} = f(y)\int\limits_1^x {y(t)dt + x(y(x) - y(1)) = \int\limits_1^x {ty(t)dt} } + x(xy(x) - 1.y(1)) + (xy(x) - 1.y(1))\int\limits_1^x {y(t)dt + xy(x) - xy(1) = \int\limits_1^x {ty(t)dt} } + {x^2}y(x) - xy(1)) + xy(x) - 1.y(1)\int\limits_1^x {y(t)dt} = \int\limits_1^x {ty(t)dt} + {x^2}y(x) - y(1) - - - - - (2)Takingdifferentialofboththesideswithrespecttoxof(2)\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} = \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} + \dfrac{d}{{dx}}{x^2}y(x) - \dfrac{d}{{dx}}y(1)Nowusingtheproductruleagain,\dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}\dfrac{{dc}}{{dx}} = 0,wherecisanyconstantWeget,y(x) - y(1) = xy(x) - y(1) + 2xy(x) + {x^2}\dfrac{d}{{dx}}y(x)y(x) - 3xy(x) = {x^2}\dfrac{d}{{dx}}y(x)\dfrac{1}{{y(x)}}.\dfrac{d}{{dx}}y(x) = \dfrac{{1 - 3x}}{{{x^2}}}\dfrac{1}{{y(x)}}.dy(x) = \dfrac{{1 - 3x}}{{{x^2}}}.dx - - - - - (3)Nowintegratingbothsidesof(3),weuse\int {\dfrac{1}{{y(x)}}.dy(x)} = \int {\dfrac{1}{{{x^2}}} - \dfrac{3}{x}.dx} Nowweknowthat\ln x + {c_1} = \int {\dfrac{1}{x}.dx} and\int {{x^n}.dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + {c_2}So,weget:\ln y(x) = \dfrac{{{x^{ - 1}}}}{{ - 1}} - 3\ln x + {c_2} - {c_1}Nowputting{c_3} = {c_2} - {c_1}Where{c_3}istheconstant,weget\ln y(x) + 3\ln x = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}Weknowthata\ln b = \ln {b^a}So,weget\ln y(x) + \ln {x^3} = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}Nowtakingexponentialonbothsidesweget,{e^{\ln y(x){x^3}}} = {e^{ - \dfrac{1}{x} + \ln {c_3}}}Nowusing{e^{\ln a}} = asoweget,y(x){x^3} = {e^{\dfrac{{ - 1}}{x} + \ln {c_3}}}Nowusing{e^{a + b}} = {e^a}{e^b}y(x){x^3} = {e^{ - \dfrac{1}{x}}} + {e^{\ln {c_3}}}Nowagainusing{e^{\ln a}} = a,weget,y(x){x^3} = {e^{\dfrac{{ - 1}}{x}}}.{c_3}y(x) = \dfrac{1}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}.{c_3}Nowwecanputc = {c_3}asitisjustaconstanty(x) = \dfrac{c}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}$
So, the correct answer is “Option D”.
Note: In this question, we are writing
dxd1∫xy(t)dt =y(x)−y(1).................(A)
because we know that:
a∫bf(x)dx=[g(x)]ab=g(b)−g(a)
Where
∫f(x)dx=[g(x)]
And proof for (A) is,
Let 1∫xy(t)dt=z(t)
Now, we know that if ∫f(x)dx=g(x), then
dxdg(x)=f(x)
So, using this formula, we can say that
dxd1∫xy(t)dt=dxdz(x)−dxdz(1) =y(x)−y(1)
Hence this is proof for (A) which is used in the above question and is an important part to solve the question.