Solveeit Logo

Question

Question: For \(x \in R\),\(x \ne 0\), \(y\) is differentiable function such that \(x\int\limits_1^x {y(t)dt} ...

For xRx \in R,x0x \ne 0, yy is differentiable function such that x1xy(t)dtx\int\limits_1^x {y(t)dt} =(x+1) = (x + 1) 1xty(t)dt\int\limits_1^x {ty(t)dt} , then y(x)y(x)equals:
A. Cx3e1xC{x^3}{e^{\dfrac{1}{x}}}
B. Cx2e1x\dfrac{C}{{{x^2}}}{e^{\dfrac{{ - 1}}{x}}}
C. Cxe1x\dfrac{C}{x}{e^{\dfrac{{ - 1}}{x}}}
D. Cx3e1x\dfrac{C}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}

Explanation

Solution

In this question, we are given that xRx \in R,x0x \ne 0, yy is a differentiable function. Here we should take differential with respect to xx of
x1xy(t)dtx\int\limits_1^x {y(t)dt} =(x+1) = (x + 1) 1xty(t)dt\int\limits_1^x {ty(t)dt} and then we will find y(x)y(x) by this equation.

Complete step-by-step answer:
We are given that
xRx \in R,x0x \ne 0, yy is differentiable function such that x1xy(t)dtx\int\limits_1^x {y(t)dt} =(x+1) = (x + 1) 1xty(t)dt\int\limits_1^x {ty(t)dt}
We can also write it as
$$$$$x\int\limits_1^x {y(t)dt} = x \int\limits_1^x {ty(t)dt} + \int\limits_1^x {ty(t)dt} - - - - - - (1)Aswehavetofind As we have to findy(x)wehavetoproceedwith(1),Takingdifferentialofboththesideswithrespecttowe have to proceed with (1), Taking differential of both the sides with respect toxof(1)of (1) \dfrac{d}{{dx}}(x\int\limits_1^x {y(t)dt)} = \dfrac{d}{{dx}}x \int\limits_1^x {ty(t)dt} + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} Nowusingtheproductrule, Now using the product rule, \dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}Weget, We get, \int\limits_1^x {y(t)dt.\dfrac{{dx}}{{dx}} + x\dfrac{{d\int\limits_1^x {y(t)dt} }}{{dx}} = \int\limits_1^x {ty(t)dt\dfrac{{dx}}{{dx}}} } + \dfrac{d}{{dx}} \int\limits_1^x {ty(t)dt} .x + \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} Nowweknowthat Now we know that\dfrac{{dx}}{{dx}} = 1,\dfrac{{d\int {f(y)} }}{{dx}} = f(y) \int\limits_1^x {y(t)dt + x(y(x) - y(1)) = \int\limits_1^x {ty(t)dt} } + x(xy(x) - 1.y(1)) + (xy(x) - 1.y(1)) \int\limits_1^x {y(t)dt + xy(x) - xy(1) = \int\limits_1^x {ty(t)dt} } + {x^2}y(x) - xy(1)) + xy(x) - 1.y(1) \int\limits_1^x {y(t)dt} = \int\limits_1^x {ty(t)dt} + {x^2}y(x) - y(1) - - - - - (2)Takingdifferentialofboththesideswithrespectto Taking differential of both the sides with respect toxof(2)of (2) \dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} = \dfrac{d}{{dx}}\int\limits_1^x {ty(t)dt} + \dfrac{d}{{dx}}{x^2}y(x) - \dfrac{d}{{dx}}y(1)Nowusingtheproductruleagain, Now using the product rule again, \dfrac{d}{{dx}}(u.v) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}} \dfrac{{dc}}{{dx}} = 0,where, where cisanyconstantWeget,is any constant We get, y(x) - y(1) = xy(x) - y(1) + 2xy(x) + {x^2}\dfrac{d}{{dx}}y(x) y(x) - 3xy(x) = {x^2}\dfrac{d}{{dx}}y(x) \dfrac{1}{{y(x)}}.\dfrac{d}{{dx}}y(x) = \dfrac{{1 - 3x}}{{{x^2}}} \dfrac{1}{{y(x)}}.dy(x) = \dfrac{{1 - 3x}}{{{x^2}}}.dx - - - - - (3)Nowintegratingbothsidesof(3),weuse Now integrating both sides of (3), we use \int {\dfrac{1}{{y(x)}}.dy(x)} = \int {\dfrac{1}{{{x^2}}} - \dfrac{3}{x}.dx} Nowweknowthat Now we know that\ln x + {c_1} = \int {\dfrac{1}{x}.dx} andand \int {{x^n}.dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + {c_2}So,weget: So, we get: \ln y(x) = \dfrac{{{x^{ - 1}}}}{{ - 1}} - 3\ln x + {c_2} - {c_1}Nowputting Now putting{c_3} = {c_2} - {c_1}Where Where{c_3}istheconstant,wegetis the constant, we get \ln y(x) + 3\ln x = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}Weknowthat We know that a\ln b = \ln {b^a}So,weget So, we get \ln y(x) + \ln {x^3} = \dfrac{{{x^{ - 1}}}}{{ - 1}} + \ln {c_3}Nowtakingexponentialonbothsidesweget, Now taking exponential on both sides we get, {e^{\ln y(x){x^3}}} = {e^{ - \dfrac{1}{x} + \ln {c_3}}}Nowusing Now using{e^{\ln a}} = asoweget,so we get, y(x){x^3} = {e^{\dfrac{{ - 1}}{x} + \ln {c_3}}}Nowusing Now using{e^{a + b}} = {e^a}{e^b} y(x){x^3} = {e^{ - \dfrac{1}{x}}} + {e^{\ln {c_3}}}Nowagainusing Now again using{e^{\ln a}} = a,weget,, we get, y(x){x^3} = {e^{\dfrac{{ - 1}}{x}}}.{c_3} y(x) = \dfrac{1}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}.{c_3}Nowwecanput Now we can putc = {c_3}asitisjustaconstantas it is just a constant y(x) = \dfrac{c}{{{x^3}}}{e^{\dfrac{{ - 1}}{x}}}$

So, the correct answer is “Option D”.

Note: In this question, we are writing
ddx1xy(t)dt\dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} =y(x)y(1).................(A) = y(x) - y(1).................(A)
because we know that:
abf(x)dx=[g(x)]ab=g(b)g(a)\int\limits_a^b {f(x)dx} = \left[ {g(x)} \right]_a^b = g(b) - g(a)
Where
f(x)dx=[g(x)]\int {f(x)dx} = \left[ {g(x)} \right]
And proof for (A) is,
Let 1xy(t)dt=z(t)\int\limits_1^x {y(t)dt} = z(t)
Now, we know that if f(x)dx=g(x)\int {f(x)dx} = g(x), then
dg(x)dx=f(x)\dfrac{{dg(x)}}{{dx}} = f(x)
So, using this formula, we can say that
ddx1xy(t)dt=dz(x)dxdz(1)dx  =y(x)y(1)  \dfrac{d}{{dx}}\int\limits_1^x {y(t)dt} = \dfrac{{dz(x)}}{{dx}} - \dfrac{{dz(1)}}{{dx}} \\\ {\text{ }} = y(x) - y(1) \\\
Hence this is proof for (A) which is used in the above question and is an important part to solve the question.