Question
Question: For \(x \in R\) , \(x \ne 0\) , \(x \ne 1\) , let \({f_0}\left( x \right) = \dfrac{1}{{1 - x}}\) and...
For x∈R , x=0 , x=1 , let f0(x)=1−x1 and fn+1(x)=f0(fn(x)) , n = 0, 1, 2, ….Then the value of f100(3)+f1(32)+f2(23) is equal to
A. 38
B. 35
C. 31
D. 34
Solution
First, we will find f1(x) by using fn+1(x)=f0(fn(x)) and substitute x=32 in f1(x) to get f1(32) .Similarly, we will find the value of f2(23) and f100(3) and after summing all three, we can get the correct answer.
Complete step-by-step answer:
We have been given that
f0(x)=1−x1
Also, fn+1(x)=f0(fn(x)) .
So, f1(x)=f0(f0(x))
Hence, using the given formula, we can write f1(x) as
$$
= \dfrac{1}{{1 - {f_0}\left( x \right)}} \\
= \dfrac{1}{{1 - \left( {\dfrac{1}{{1 - x}}} \right)}} \\
= \dfrac{1}{{\left( {\dfrac{{1 - x - 1}}{{1 - x}}} \right)}} \\
= \dfrac{{1 - x}}{{ - x}} \\
= \dfrac{{x - 1}}{x} \\
= {f_{100}}\left( 3 \right) + {f_1}\left( {\dfrac{2}{3}} \right) + {f_2}\left( {\dfrac{3}{2}} \right) \\
= \dfrac{2}{3} - \dfrac{1}{2} + \dfrac{3}{2} \\
= \dfrac{{4- 3 + 9}}{6} \\
= \dfrac{{10}}{6} \\
= \dfrac{5}{3} \\