Solveeit Logo

Question

Mathematics Question on Quadratic Equations

For xRx \in R, the number of real roots of the equation 3x24x21+x1=03 x^{2}-4\left|x^{2}-1\right|+x-1=0 is ______

Answer

3x24x21+x1=03x^2 – 4|x^2 – 1| + x – 1 = 0

Let x[1,1]x ∈ [-1, 1]

3x24(x2+1)+x1=03x^2 – 4(-x^2+1) + x – 1 = 0

3x2+4x24+x1=03x^2 + 4x^2 – 4 + x – 1 = 0

⇒ $$7x^2 + x – 5 = 0

x=1±(1+140)2x = -1±\frac{\sqrt{(1+140)}}{2}

Both values are acceptable.

Letx(,1)(1,) x ∈ (-∞, -1) ⋃ (1, ∞)

x24(x21)+x1=0x^2-4(x^2-1)+x-1 = 0

x2x3=0x^2-x-3 = 0

x=1±(1+12)2x = 1±\frac{\sqrt{(1+12)}}{2}

Again both are acceptable.

Hence, total number of solution =4.