Solveeit Logo

Question

Question: For \(x\in R-\left\\{ 0,1 \right\\}\) , let \({{f}_{1}}\left( x \right)=\dfrac{1}{x}\),\({{f}_{2}}\l...

For x\in R-\left\\{ 0,1 \right\\} , let f1(x)=1x{{f}_{1}}\left( x \right)=\dfrac{1}{x},f2(x)=1x{{f}_{2}}\left( x \right)=1-x and f3(x)=11x{{f}_{3}}\left( x \right)=\dfrac{1}{1-x} be three given functions. If a function, J(x)J\left( x \right) satisfies (f2Jf1)(x)=f3(x)\left( f_{2}^{{}^\circ }{{J}^{{}^\circ }}{{f}_{1}} \right)\left( x \right)={{f}_{3}}\left( x \right) then J(x)J\left( x \right) is equal to
(A) f3(x){{f}_{3}}\left( x \right)
(B) f1(x){{f}_{1}}\left( x \right)
(C) f2(x){{f}_{2}}\left( x \right)
(D) 1xf3(x)\dfrac{1}{x}{{f}_{3}}\left( x \right)

Explanation

Solution

For answering this question we will use the given definitions of the functions f1(x)=1x,f2(x)=1x and f3(x)=11x{{f}_{1}}\left( x \right)=\dfrac{1}{x},{{f}_{2}}\left( x \right)=1-x\text{ and }{{f}_{3}}\left( x \right)=\dfrac{1}{1-x} and simplify the given expression (f2Jf1)(x)=f3(x)\left( f_{2}^{{}^\circ }{{J}^{{}^\circ }}{{f}_{1}} \right)\left( x \right)={{f}_{3}}\left( x \right) by deriving the inverse of f2{{f}_{2}} as f21(x)=1xf_{2}^{-1}\left( x \right)=1-x. And derive the definition of J(x)J\left( x \right) and compare them with the functions we have and strive to a conclusion.

Complete step-by-step solution:
Now considering from the question we have f1(x)=1x,f2(x)=1x and f3(x)=11x{{f}_{1}}\left( x \right)=\dfrac{1}{x},{{f}_{2}}\left( x \right)=1-x\text{ and }{{f}_{3}}\left( x \right)=\dfrac{1}{1-x} we will use these definitions of the function and find the value of J(x)J\left( x \right).
We have (f2Jf1)(x)=f3(x)\left( f_{2}^{{}^\circ }{{J}^{{}^\circ }}{{f}_{1}} \right)\left( x \right)={{f}_{3}}\left( x \right) .
By using the value of f1(x)=1x{{f}_{1}}\left( x \right)=\dfrac{1}{x} we will simplify this and write it as (f2J)(1x)=f3(x)\left( f_{2}^{{}^\circ }J \right)\left( \dfrac{1}{x} \right)={{f}_{3}}\left( x \right).
By using the value of f3=11x{{f}_{3}}=\dfrac{1}{1-x} we will simplify this and write it as (f2J)(1x)=11x\left( f_{2}^{{}^\circ }J \right)\left( \dfrac{1}{x} \right)=\dfrac{1}{1-x}.
By applying the inverse of f2{{f}_{2}} on both sides we will have J(1x)=f21(11x)J\left( \dfrac{1}{x} \right)=f_{2}^{-1}\left( \dfrac{1}{1-x} \right) .
We have f2(x)=1x {{f}_{2}}\left( x \right)=1-x\text{ } by assuming f2(x)=y{{f}_{2}}\left( x \right)=y we will have y=1xy=1-x then we can say x=1yx=1-y that implies f21(x)=1xf_{2}^{-1}\left( x \right)=1-x .
By using this value f21(x)=1xf_{2}^{-1}\left( x \right)=1-x we will have it as J(1x)=1(11x)J\left( \dfrac{1}{x} \right)=1-\left( \dfrac{1}{1-x} \right) .
After simplifying this we will have it as J(1x)=1x11x=x1x=xx1J\left( \dfrac{1}{x} \right)=\dfrac{1-x-1}{1-x}=\dfrac{-x}{1-x}=\dfrac{x}{x-1} .
Let us now simplify it in the form of 1x\dfrac{1}{x} by assuming p=1xp=\dfrac{1}{x} we can write it as J(y)=1y1y1=11yJ\left( y \right)=\dfrac{\dfrac{1}{y}}{\dfrac{1}{y}-1}=\dfrac{1}{1-y} .
Now we can say that J(x)=11xJ\left( x \right)=\dfrac{1}{1-x} that is the same as f3(x){{f}_{3}}\left( x \right).
Hence, option A is correct.

Note: While answering questions of this type we should be careful while performing the simplifications and inverse of a function if in case by committing a mistake and writing the inverse of f2{{f}_{2}} as f21(x)=xf_{2}^{-1}\left( x \right)=x we will have the conclusion as J(x)=xx1J\left( x \right)=\dfrac{x}{x-1} which is not there in the options.