Solveeit Logo

Question

Mathematics Question on Definite Integral

For x(π2,π2)x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right), ify(x)=cscx+sinxcscxsecx+tanxsin2xdxy(x) = \int \frac{\csc x + \sin x}{\csc x \sec x + \tan x \sin^2 x} \, dxandlimxπ2y(x)=0\lim_{x \to -\frac{\pi}{2}} y(x) = 0then y(π4)y\left(\frac{\pi}{4}\right) is equal to

A

tan1(12)\tan^{-1} \left( \frac{1}{\sqrt{2}} \right)

B

12tan1(12)\frac{1}{2} \tan^{-1} \left( \frac{1}{\sqrt{2}} \right)

C

12tan1(12)-\frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{1}{\sqrt{2}} \right)

D

12tan1(12)\frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)

Answer

12tan1(12)\frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)

Explanation

Solution

Simplify the Integrand: - Rewrite the integrand as:

y(x)=(1+sin2x)cosx1+sin4xdxy(x) = \int \frac{(1 + \sin^2 x) \cos x}{1 + \sin^4 x} \, dx

- Let sinx=t\sin x = t, so cosxdx=dt\cos x \, dx = dt.

Substitute and Integrate: - Substituting sinx=t\sin x = t, we get:

y(x)=1+t2t4+1dt=12tan1(t12)+Cy(x) = \int \frac{1 + t^2}{t^4 + 1} \, dt = \frac{1}{\sqrt{2}} \tan^{-1} \left( t - \frac{1}{\sqrt{2}} \right) + C

Determine the Constant CC: - At x=π4x = \frac{\pi}{4}, t=12t = \frac{1}{\sqrt{2}}. - Since limxπ2y(x)=0\lim_{x \to -\frac{\pi}{2}} y(x) = 0, we find C=0C = 0.

Calculate y(π4)y \left( \frac{\pi}{4} \right): - For x=π4x = \frac{\pi}{4}, t=12t = \frac{1}{\sqrt{2}}. - Thus:

y(π4)=12tan1(12)y \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)

So, the correct answer is: 12tan1(12)\frac{1}{\sqrt{2}} \tan^{-1} \left( -\frac{1}{2} \right)