Question
Mathematics Question on Definite Integral
For x∈(−2π,2π), ify(x)=∫cscxsecx+tanxsin2xcscx+sinxdxandlimx→−2πy(x)=0then y(4π) is equal to
A
tan−1(21)
B
21tan−1(21)
C
−21tan−1(21)
D
21tan−1(−21)
Answer
21tan−1(−21)
Explanation
Solution
Simplify the Integrand: - Rewrite the integrand as:
y(x)=∫1+sin4x(1+sin2x)cosxdx
- Let sinx=t, so cosxdx=dt.
Substitute and Integrate: - Substituting sinx=t, we get:
y(x)=∫t4+11+t2dt=21tan−1(t−21)+C
Determine the Constant C: - At x=4π, t=21. - Since limx→−2πy(x)=0, we find C=0.
Calculate y(4π): - For x=4π, t=21. - Thus:
y(4π)=21tan−1(−21)
So, the correct answer is: 21tan−1(−21)