Solveeit Logo

Question

Mathematics Question on complex numbers

For x(0,π)x \in(0, \pi), the equation sinx+2sin2xsin3x=3\sin x+2 \sin 2 x-\sin 3 x=3 has

A

infinitely many solutions

B

three solutions

C

one solution

D

no solution

Answer

no solution

Explanation

Solution

sinx+2sin2xsin3x=3\sin x+2 \sin 2 x-\sin 3 x=3
sinx+4sinxcosx3sinx+4sin3x=3\sin x+4 \sin x \cos x-3 \sin x+4 \sin ^{3} x=3
sinx[2+4cosx+4(1cos2x)]=3\sin x\left[-2+4 \cos x+4\left(1-\cos ^{2} x\right)\right]=3
sinx[2(4cos2x4cosx+1)+1]=3\sin x\left[2-\left(4 \cos ^{2} x-4 \cos x+1\right)+1\right]=3
sinx[3(2cosx1)2]=3\sin x\left[3-(2 \cos x-1)^{2}\right]=3
sinx=1\Rightarrow \sin x=1 and 2cosx1=02 \cos x-1=0
x=π2\Rightarrow x=\frac{\pi}{2} and x=π3x=\frac{\pi}{3}