Solveeit Logo

Question

Mathematics Question on Sequences and Series

For x0x \geq 0, the least value of KK, for which 41+x,41x,K2,16x,16x4^{1+x}, 4^{1-x}, \frac{K}{2}, 16^{x}, 16^{-x} are three consecutive terms of an A.P. is equal to:

A

10

B

4

C

8

D

16

Answer

10

Explanation

Solution

Given that the terms 41+x+41x4^{1+x} + 4^{1-x}, K2\frac{K}{2}, and 16x+16x16^x + 16^{-x} are three consecutive terms of an arithmetic progression, we can set up the condition for an arithmetic progression:

2×(K2)=(41+x+41x)+(16x+16x).2 \times \left(\frac{K}{2}\right) = \left(4^{1+x} + 4^{1-x}\right) + \left(16^x + 16^{-x}\right).

Simplifying:

K=41+x+41x+16x+16x.K = 4^{1+x} + 4^{1-x} + 16^x + 16^{-x}.

Step 1: Express Each Term in Simplified Form

Recall that:

41+x=44x,41x=44x,16x=(4x)2,16x=(4x)2.4^{1+x} = 4 \cdot 4^x, \quad 4^{1-x} = 4 \cdot 4^{-x}, \quad 16^x = (4^x)^2, \quad 16^{-x} = (4^{-x})^2.

Thus:

41+x+41x=4(4x+4x),16x+16x=(4x)2+(4x)2.4^{1+x} + 4^{1-x} = 4 \left(4^x + 4^{-x}\right), \quad 16^x + 16^{-x} = (4^x)^2 + (4^{-x})^2.

So:

K=4(4x+4x)+((4x)2+(4x)2).K = 4 \left(4^x + 4^{-x}\right) + \left((4^x)^2 + (4^{-x})^2\right).

Step 2: Substitute and Simplify

Let t=4x+4xt = 4^x + 4^{-x}. Then:

(4x)2+(4x)2=t22(by the identity (a+b)2=a2+b2+2ab).(4^x)^2 + (4^{-x})^2 = t^2 - 2 \quad \text{(by the identity } (a+b)^2 = a^2 + b^2 + 2ab\text{)}.

So:

K=4t+(t22).K = 4t + (t^2 - 2).

Step 3: Minimize KK

To find the least value of KK, we need to minimize tt subject to t2t \geq 2 (since 4x+4x24^x + 4^{-x} \geq 2 for x0x \geq 0):

K=4t+t22.K = 4t + t^2 - 2.

The minimum value of tt is 2, so substituting t=2t = 2:

K=42+222=8+42=10.K = 4 \cdot 2 + 2^2 - 2 = 8 + 4 - 2 = 10.

Therefore, the least value of KK is 10.