Question
Mathematics Question on Sequences and Series
For x≥0, the least value of K, for which 41+x,41−x,2K,16x,16−x are three consecutive terms of an A.P. is equal to:
10
4
8
16
10
Solution
Given that the terms 41+x+41−x, 2K, and 16x+16−x are three consecutive terms of an arithmetic progression, we can set up the condition for an arithmetic progression:
2×(2K)=(41+x+41−x)+(16x+16−x).
Simplifying:
K=41+x+41−x+16x+16−x.
Step 1: Express Each Term in Simplified Form
Recall that:
41+x=4⋅4x,41−x=4⋅4−x,16x=(4x)2,16−x=(4−x)2.
Thus:
41+x+41−x=4(4x+4−x),16x+16−x=(4x)2+(4−x)2.
So:
K=4(4x+4−x)+((4x)2+(4−x)2).
Step 2: Substitute and Simplify
Let t=4x+4−x. Then:
(4x)2+(4−x)2=t2−2(by the identity (a+b)2=a2+b2+2ab).
So:
K=4t+(t2−2).
Step 3: Minimize K
To find the least value of K, we need to minimize t subject to t≥2 (since 4x+4−x≥2 for x≥0):
K=4t+t2−2.
The minimum value of t is 2, so substituting t=2:
K=4⋅2+22−2=8+4−2=10.
Therefore, the least value of K is 10.