Solveeit Logo

Question

Mathematics Question on Differentiability

For xϵR,f(x)=log2sinx x \epsilon R , f (x) = | \log 2 - \sin x| and g(x)=f(f(x))g(x) = f(f(x)), then :

A

gg is not differentiable at x=0x = 0

B

g(0)g'(0) = cos(log2)cos(log2)

C

g(0)g'(0) = cos(log2)-cos(log2)

D

gg is differentiable at x=0x = 0 and g(0)=sin(log2)g'(0) = -sin(log2)

Answer

g(0)g'(0) = cos(log2)cos(log2)

Explanation

Solution

g(x)=loge2sin(loge2sinx)g(x)=\left|\log _{e} 2-\sin \left(\left|\log _{e} 2-\sin x\right|\right)\right|
At x=0,g(x)=loge(2)sin(loge2sinx)x=0, g(x)=\log _{e}(2)-\sin \left(\log _{e} 2-\sin x\right)
g(x)=cos(loge(2)sinx)×cos(x)\therefore g'(x)=\cos \left(\log _{e}(2)-\sin x\right) \times \cos (x)
g(0)=cos(loge(2))\Rightarrow g'(0)=\cos \left(\log _{e}(2)\right)