Solveeit Logo

Question

Question: For x, a>0 the roots of the equation \({{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}...

For x, a>0 the roots of the equation logaxa+logxa2+loga2xa3=0{{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0 is (are) given by
(a) a43{{a}^{-\dfrac{4}{3}}}
(b) a34{{a}^{-\dfrac{3}{4}}}
(c) a12{{a}^{-\dfrac{1}{2}}}
(d) a23{{a}^{-\dfrac{2}{3}}}

Explanation

Solution

Hint: First convert out given expression using the formula, logax=logalogx,log(cd)=logc+logd,log(dn)=nlogd{{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d. Then divide the whole expression by common term. Then transform the obtained expression using logax=t{{\log }_{a}}x=t, then find the value of ‘t’ and then transform it to get values of x in terms of a.

Complete step-by-step answer:
We are given that for x, a > 0 we have to find the roots of equation
logaxa+logxa2+loga2xa3=0.............(i){{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)
Now to proceed the equation we have to use formula such as,
logcd=logdlogc{{\log }_{c}}d=\dfrac{\log d}{\log c}
By using this we can transform equation (i) as,
logalogax+loga2logx+loga3loga2x=0............(ii)\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)
Now we will use the formula such as,
log(cd) = log c +log d
By using this we can write equation (ii) as,
logaloga+logx+loga2logx+loga3loga2+logx=0............(iii)\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)
Now we will use the formula such as,
log(dn)=nlogd\log \left( {{d}^{n}} \right)=n\log d
By using this we can write the equation (iii) as,
logaloga+logx+2logalogx+3loga2loga+logx=0............(iv)\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)
Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,
11+logxloga+2logxloga+32+logxloga=0...............(v)\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)
In equation (v) we will use the formula, logclogd=logdc\dfrac{\log c}{\log d}={{\log }_{d}}c we get,
11+logax+2logax+32+logax=0..............(vi)\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)
Now we will substitute logax=t{{\log }_{a}}x=t , we will transform equation (vi) as
11+t+2t+32+t=0............(vii)\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)
Taking LCM in (vii) we get,
t(2+t)+2(1+t)(2+t)+3t(t+1)(1+t)t(2+t)=0\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0
On cross multiplication we get,
t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0
On further simplification we get,
2t+t2+2(2+t+2t+t2)+3t2+3t=0 2t+t2+4+2t+4t+2t2+3t2+3t=0 \begin{aligned} & 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\\ & \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\\ \end{aligned}
On simplification we get,
6t2+11t+4=06{{t}^{2}}+11t+4=0
This is a quadratic equation. We will solve it by splitting the middle term, we get
6t2+8t+3t+4=0 2t(3t+4)+1(3t+4)=0 (3t+4)(2t+1)=0 3t+4=0,2t+1=0 t=43,t=12 \begin{aligned} & 6{{t}^{2}}+8t+3t+4=0 \\\ & \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\\ & \Rightarrow (3t+4)(2t+1)=0 \\\ & \Rightarrow 3t+4=0,2t+1=0 \\\ & \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\\ \end{aligned}
So, finally the value for t=43,12t=\dfrac{-4}{3},\dfrac{-1}{2}.
We had assumed,
logax=t{{\log }_{a}}x=t
Substituting the value of ‘t’, we get
logax=43{{\log }_{a}}x=\dfrac{-4}{3} and logax=12{{\log }_{a}}x=-\dfrac{1}{2}
Now we will use the transformation that is, logba=ca=bc{{\log }_{b}}a=c\Rightarrow a={{b}^{c}}. By using this in above equation, we get
x=a43x={{a}^{-\dfrac{4}{3}}} and x=a12x={{a}^{\dfrac{-1}{2}}} respectively.
Therefore, the correct answer is option (a) and (c).

Note: Students should be careful while calculating and finding values of logax{{\log }_{a}}x also using transformation of changing logax=t{{\log }_{a}}x=tas x=atx={{a}^{t}}.
Another way to solve the quadratic equation is using the formula, t=b±b24ac2at=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.