Solveeit Logo

Question

Question: For x > 1, if $(2x)^{2y} = 4e^{2x-2y}$, then $(1 + \log_e 2x)^2 \frac{dy}{dx}$ is equal to...

For x > 1, if (2x)2y=4e2x2y(2x)^{2y} = 4e^{2x-2y}, then (1+loge2x)2dydx(1 + \log_e 2x)^2 \frac{dy}{dx} is equal to

A

xloge2x+loge2x\frac{x \log_e 2x + \log_e 2}{x}

B

xloge2xloge2x\frac{x \log_e 2x - \log_e 2}{x}

C

xloge2x+loge2xx \log_e 2x + \frac{\log_e 2}{x}

D

xloge2xloge22x \log_e 2x - \frac{\log_e 2}{2}

Answer

xloge2xloge2x\frac{x \log_e 2x - \log_e 2}{x}

Explanation

Solution

Given

(2x)2y=4e2x2y.(2x)^{2y} = 4e^{2x-2y}.
  1. Taking logarithms on both sides:

    ln((2x)2y)=ln(4e2x2y).\ln\left((2x)^{2y}\right) = \ln\left(4e^{2x-2y}\right).

    This gives:

    2yln(2x)=ln4+2x2y.2y \ln(2x) = \ln4 + 2x - 2y.

    Since ln4=2ln2\ln4 = 2\ln2, divide the equation by 2:

    yln(2x)=ln2+xy.y\ln(2x) = \ln2 + x - y.
  2. Rearranging:

    yln(2x)+y=x+ln2y(ln(2x)+1)=x+ln2.y\ln(2x) + y = x + \ln2 \quad\Longrightarrow\quad y\big(\ln(2x)+1\big) = x + \ln2.

    Therefore:

    y=x+ln2ln(2x)+1.y = \frac{x+\ln2}{\ln(2x)+1}.
  3. Differentiate yy with respect to xx using the quotient rule:

    dydx=(1)(ln(2x)+1)(x+ln2)(1x)(ln(2x)+1)2.\frac{dy}{dx} = \frac{(1)(\ln(2x)+1) - (x+\ln2)\left(\frac{1}{x}\right)}{\big(\ln(2x)+1\big)^2}.

    Simplify the numerator:

    ln(2x)+1(1+ln2x)=ln(2x)ln2x.\ln(2x)+1 - \left(1 + \frac{\ln2}{x}\right) = \ln(2x) - \frac{\ln2}{x}.

    Thus,

    dydx=ln(2x)ln2x(ln(2x)+1)2.\frac{dy}{dx} = \frac{\ln(2x) - \frac{\ln2}{x}}{\big(\ln(2x)+1\big)^2}.
  4. Multiply by (1+ln(2x))2(1+\ln(2x))^2:

    (1+ln(2x))2dydx=ln(2x)ln2x.(1+\ln(2x))^2 \frac{dy}{dx} = \ln(2x) - \frac{\ln2}{x}.

    Rewriting,

    ln(2x)ln2x=xln(2x)ln2x.\ln(2x) - \frac{\ln2}{x} = \frac{x\ln(2x)-\ln2}{x}.