Question
Question: For x > 1, if $(2x)^{2y} = 4e^{2x-2y}$, then $(1 + \log_e 2x)^2 \frac{dy}{dx}$ is equal to...
For x > 1, if (2x)2y=4e2x−2y, then (1+loge2x)2dxdy is equal to

A
xxloge2x+loge2
B
xxloge2x−loge2
C
xloge2x+xloge2
D
xloge2x−2loge2
Answer
xxloge2x−loge2
Explanation
Solution
Given
(2x)2y=4e2x−2y.-
Taking logarithms on both sides:
ln((2x)2y)=ln(4e2x−2y).This gives:
2yln(2x)=ln4+2x−2y.Since ln4=2ln2, divide the equation by 2:
yln(2x)=ln2+x−y. -
Rearranging:
yln(2x)+y=x+ln2⟹y(ln(2x)+1)=x+ln2.Therefore:
y=ln(2x)+1x+ln2. -
Differentiate y with respect to x using the quotient rule:
dxdy=(ln(2x)+1)2(1)(ln(2x)+1)−(x+ln2)(x1).Simplify the numerator:
ln(2x)+1−(1+xln2)=ln(2x)−xln2.Thus,
dxdy=(ln(2x)+1)2ln(2x)−xln2. -
Multiply by (1+ln(2x))2:
(1+ln(2x))2dxdy=ln(2x)−xln2.Rewriting,
ln(2x)−xln2=xxln(2x)−ln2.