Solveeit Logo

Question

Mathematics Question on Differentiability

For x>1x > 1, if (2x)2y=4e2x2y(2x)^{2y} = 4e^{2x - 2y}, then (1+loge2x)2dydx\left( 1 +\log_{e} 2x\right)^{2} \frac{dy}{dx} is equal to :

A

loge2x\log_e 2x

B

xloge2x+loge2x\frac{x \log_{e} 2x +\log_{e} 2}{x}

C

xloge2xx \log_e 2x

D

xloge2xloge2x\frac{x \log_{e} 2x - \log_{e} 2}{x}

Answer

xloge2xloge2x\frac{x \log_{e} 2x - \log_{e} 2}{x}

Explanation

Solution

(2x)2y=4e2x2y(2x)^{2y} = 4e^{2x - 2y}
2yn2x=n4+2x2y2y \ell n2x = \ell n4 + 2x - 2y
y=x+n21+n2xy = \frac{x + \ell n 2}{1 + \ell n 2 x}
y=(1+n2x)(x+n2)1x(1+n2x)2y' = \frac{(1 + \ell n 2 x) - (x + \ell n 2 ) \frac{1}{x}}{( 1+ \ell n 2x )^2}
y=1+n2x)2=[xn2xn2x]y ' = 1 + \ell n 2 x)^2 = [\frac{x \ell n 2x - \ell n 2}{x} ]