Solveeit Logo

Question

Question: For x > 1, if \({{(2x)}^{2y}}=4{{e}^{(2x-2y)}}\), then \({{(1+{{\log }_{e}}2x)}^{2}}\dfrac{dy}{dx}\)...

For x > 1, if (2x)2y=4e(2x2y){{(2x)}^{2y}}=4{{e}^{(2x-2y)}}, then (1+loge2x)2dydx{{(1+{{\log }_{e}}2x)}^{2}}\dfrac{dy}{dx} is equal to
a) loge2x b) xloge2x+loge2x c) xloge2x d) xloge2xloge2x \begin{aligned} & \text{a) lo}{{\text{g}}_{e}}2x \\\ & \text{b) }\dfrac{x{{\log }_{e}}2x+{{\log }_{e}}2}{x} \\\ & \text{c)}\text{ xlo}{{\text{g}}_{e}}2x \\\ & \text{d) }\dfrac{x{{\log }_{e}}2x-{{\log }_{e}}2}{x} \\\ \end{aligned}

Explanation

Solution

Now we are given with the equation (2x)2y=4e(2x2y){{(2x)}^{2y}}=4{{e}^{(2x-2y)}} we will simplify the equation by taking log on both side and uspe properties of log to further simplify. Then we will write it in terms of y and we will differentiate the equation to find dydx\dfrac{dy}{dx}. To find dydx\dfrac{dy}{dx} we will use the formula fg=gffgg2\dfrac{f}{g}=\dfrac{gf'-fg'}{{{g}^{2}}} and use the fact that differentiation of f(g(x)) = f(g(x)).g(x)f'(g(x)).g'(x) . Further we will rearrange terms to find the value of (1+loge2x)2dydx{{(1+{{\log }_{e}}2x)}^{2}}\dfrac{dy}{dx}

Complete step-by-step answer:
Now we are given with the equation that (2x)2y=4e(2x2y){{(2x)}^{2y}}=4{{e}^{(2x-2y)}}
Taking log on both the sides we get
log(2x)2y=log4e(2x2y)\log {{(2x)}^{2y}}=\log 4{{e}^{(2x-2y)}}
Now we know that logab=loga+logb\log ab=\log a+\log b using this we get
log(2x)2y=log4+loge(2x2y)\log {{(2x)}^{2y}}=\log 4+\log {{e}^{(2x-2y)}}
log(2x)2y=log22+loge(2x2y)\log {{(2x)}^{2y}}=\log {{2}^{2}}+\log {{e}^{(2x-2y)}}
Now we know a property of log according to which logan=nloga\log {{a}^{n}}=n\log a
Hence using this we get
2ylog(2x)=(2x2y)loge+2log22y\log \left( 2x \right)=\left( 2x-2y \right)\log e+2\log 2
Now since the base of log given is e logee=1{{\log }_{e}}e=1 hence we get
2ylog(2x)=(2x2y)+2log22y\log \left( 2x \right)=\left( 2x-2y \right)+2\log 2
Now dividing the whole equation by 2 we get
ylog(2x)=xy+log2y\log \left( 2x \right)=x-y+\log 2
Now taking y on RHS we get
ylog(2x)+y=x+log2 y(1+log2x)=(x+log2) y=x+log21+log2x \begin{aligned} & y\log \left( 2x \right)+y=x+\log 2 \\\ & \Rightarrow y(1+\log 2x)=(x+\log 2) \\\ & \Rightarrow y=\dfrac{x+\log 2}{1+\log 2x} \\\ \end{aligned}
Now differentiating on both sides we get.
We know that differentiation of fg=gffgg2\dfrac{f}{g}=\dfrac{gf'-fg'}{{{g}^{2}}}. Using this we get
dydx=(1+log2x)(x+log2)(x+log2)((1+log2x))(1+log2x)2.................(1)\dfrac{dy}{dx}=\dfrac{(1+\log 2x)(x+\log 2)'-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.................(1)
Now differentiation of (x + log 2) = 1 since log 2 is a constant
Substituting this in equation (1) we get
dydx=(1+log2x)(x+log2)((1+log2x))(1+log2x)2.......................(2)\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-(x+\log 2)\left( (1+\log 2x) \right)'}{{{\left( 1+\log 2x \right)}^{2}}}.......................(2)
Now let us differentiate ((1+log2x)2)\left( {{(1+\log 2x)}^{2}} \right)
Now we know that differentiation of f(g(x)) is given by f(g(x)).g(x)f'(g(x)).g'(x) using this we get

& \left( 1+\log 2x \right)'=.\left( \dfrac{1}{2x}.2 \right) \\\ & \left( 1+\log 2x \right)'=\dfrac{1}{x} \\\ \end{aligned}$$ Now substituting the value of $$\left( {{(1+\log 2x)}^{2}} \right)'$$ in equation (2) we get $$\dfrac{dy}{dx}=\dfrac{(1+\log 2x)-\dfrac{(x+\log 2)}{x}}{{{\left( 1+\log 2x \right)}^{2}}}$$ Now multiplying the whole equation by ${{\left( 1+\log 2x \right)}^{2}}$ we get $$\begin{aligned} & \dfrac{dy}{dx}{{\left( 1+\log 2x \right)}^{2}}=(1+\log 2x)-\dfrac{(x+\log 2)}{x} \\\ & =\dfrac{x+x\log 2x-x+\log 2}{x} \\\ & =\dfrac{x\log 2x+\log 2}{x} \\\ \end{aligned}$$ Hence the value of ${{\left( 1+\log 2x \right)}^{2}}$= $$\dfrac{x\log 2x+\log 2}{x}$$ **So, the correct answer is “Option (b)”.** **Note:** While using the formula for differentiation of $\dfrac{f}{g}$note that the the differentiation is $=\dfrac{gf'-fg'}{{{g}^{2}}}$ not to be confused with $\dfrac{gf'+fg'}{{{g}^{2}}}$ or $\dfrac{fg'-gf'}{{{g}^{2}}}$.