Solveeit Logo

Question

Question: For what \[x\]is the derivative of the function \[f(x)\]equal to zero? \[f(x) = \operatorname{Sin}...

For what xxis the derivative of the function f(x)f(x)equal to zero?
f(x)=Sin3x3cos3x+3(cosx3sinx)f(x) = \operatorname{Sin} 3x - \sqrt 3 \cos 3x + 3(\cos x - \sqrt 3 \sin x)

Explanation

Solution

We will first simplify the given function and use the formulas of Trigonometric Functions.

sin(A±B)=sinAcosB±cosAsinB\sin (A \pm B) = \sin A\cos B \pm \cos A\sin B
cos(A±B)=cosAcosBsinAsinB\cos (A \pm B) = \cos A\cos B \mp \sin A\sin B
After that we will find the derivative of the simplified function with respect to xx. The derivative with respect to xxis represented as ddx\dfrac{d}{{dx}}. We know,
ddx(sinax)=acosax\dfrac{d}{{dx}}(\sin ax) = a\cos ax
ddx(cosax)=asinax\dfrac{d}{{dx}}(\cos ax) = - a\sin ax
ddxax=a\dfrac{d}{{dx}}ax = a
After finding the derivative, we need to equate it to zero and then solve for xxin that equation.

Complete step-by-step solution:
We are given, f(x)=Sin3x3cos3x+3(cosx3sinx)f(x) = \operatorname{Sin} 3x - \sqrt 3 \cos 3x + 3(\cos x - \sqrt 3 \sin x)
Multiplying and Dividing the right hand side by 22, we get
f(x)=22[Sin3x3cos3x+3(cosx3sinx)]f(x) = \dfrac{2}{2}[\operatorname{Sin} 3x - \sqrt 3 \cos 3x + 3(\cos x - \sqrt 3 \sin x)]
f(x)=2[12Sin3x32cos3x+32(cosx3sinx)]f(x) = 2[\dfrac{1}{2}\operatorname{Sin} 3x - \dfrac{{\sqrt 3 }}{2}\cos 3x + \dfrac{3}{2}(\cos x - \sqrt 3 \sin x)] (Shifting 12\dfrac{1}{2}inside the bracket)
f(x)=2[12Sin3x32cos3x+3(12cosx32sinx)]f(x) = 2[\dfrac{1}{2}\operatorname{Sin} 3x - \dfrac{{\sqrt 3 }}{2}\cos 3x + 3(\dfrac{1}{2}\cos x - \dfrac{{\sqrt 3 }}{2}\sin x)] (Opening Brackets) -----(1)
We know, sinπ3=32\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2} and cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}
Substituting it in the above equation, we get
f(x)=2[cosπ3Sin3xsinπ3cos3x+3(cosπ3cosxsinπ3sinx)]f(x) = 2[\cos \dfrac{\pi }{3}\operatorname{Sin} 3x - \sin \dfrac{\pi }{3}\cos 3x + 3(\cos \dfrac{\pi }{3}\cos x - \sin \dfrac{\pi }{3}\sin x)]
Comparing with sin(A±B)=sinAcosB±cosAsinB\sin (A \pm B) = \sin A\cos B \pm \cos A\sin Band cos(A±B)=cosAcosBsinAsinB\cos (A \pm B) = \cos A\cos B \mp \sin A\sin Bwith the above equation, we get
f(x)=2[sin(3xπ3)+3cos(x+π3)]f(x) = 2[\sin (3x - \dfrac{\pi }{3}) + 3\cos (x + \dfrac{\pi }{3})]
Now, we need the whole equation either in terms of sinx\sin xor cosx\cos x
So, we will substitute sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}and cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}for the last two terms in (1)
Therefore, we get
f(x)=2[cosπ3Sin3xsinπ3cos3x+3(sinπ6cosxcosπ6sinx)]f(x) = 2[\cos \dfrac{\pi }{3}\operatorname{Sin} 3x - \sin \dfrac{\pi }{3}\cos 3x + 3(\sin \dfrac{\pi }{6}\cos x - \cos \dfrac{\pi }{6}\sin x)]
Now, using the trigonometric formulas, we get
f(x)=2[sin(3xπ3)+3sin(π6x)]f(x) = 2[\sin (3x - \dfrac{\pi }{3}) + 3\sin (\dfrac{\pi }{6} - x)]
Now, finding the derivative of f(x)=2[sin(3xπ3)+3sin(π6x)]f(x) = 2[\sin (3x - \dfrac{\pi }{3}) + 3\sin (\dfrac{\pi }{6} - x)] with respect to xx.
ddx[f(x)]=ddx[2[sin(3xπ3)+3sin(π6x)]]\Rightarrow \dfrac{d}{{dx}}[f(x)] = \dfrac{d}{{dx}}[2[\sin (3x - \dfrac{\pi }{3}) + 3\sin (\dfrac{\pi }{6} - x)]]
ddx[f(x)]=2[ddxsin(3xπ3)+3ddxsin(π6x)]\Rightarrow \dfrac{d}{{dx}}[f(x)] = 2[\dfrac{d}{{dx}}\sin (3x - \dfrac{\pi }{3}) + 3\dfrac{d}{{dx}}\sin (\dfrac{\pi }{6} - x)]
ddx[f(x)]=2[cos(3xπ3)×ddx(3x)+3(cos(π6x)×ddx(x))]\Rightarrow \dfrac{d}{{dx}}[f(x)] = 2[\cos (3x - \dfrac{\pi }{3}) \times \dfrac{d}{{dx}}(3x) + 3(\cos (\dfrac{\pi }{6} - x) \times \dfrac{d}{{dx}}( - x))] (Chain Rule)
ddx[f(x)]=2[cos(3xπ3)×3+3(cos(π6x)×(1))]\Rightarrow \dfrac{d}{{dx}}[f(x)] = 2[\cos (3x - \dfrac{\pi }{3}) \times 3 + 3(\cos (\dfrac{\pi }{6} - x) \times ( - 1))]
ddx[f(x)]=2×3[cos(3xπ3)cos(π6x)]\Rightarrow \dfrac{d}{{dx}}[f(x)] = 2 \times 3[\cos (3x - \dfrac{\pi }{3}) - \cos (\dfrac{\pi }{6} - x)] (Taking 33common)
ddx[f(x)]=6×[cos(3xπ3)cos(π6x)]\Rightarrow \dfrac{d}{{dx}}[f(x)] = 6 \times [\cos (3x - \dfrac{\pi }{3}) - \cos (\dfrac{\pi }{6} - x)]
Now, equating this derivative of f(x)f(x)to zero.
ddx[f(x)]=6×[cos(3xπ3)cos(π6x)]=0\Rightarrow \dfrac{d}{{dx}}[f(x)] = 6 \times [\cos (3x - \dfrac{\pi }{3}) - \cos (\dfrac{\pi }{6} - x)] = 0
6×[cos(3xπ3)cos(π6x)]=0\Rightarrow 6 \times [\cos (3x - \dfrac{\pi }{3}) - \cos (\dfrac{\pi }{6} - x)] = 0
[cos(3xπ3)cos(π6x)]=0[ \cos (3x - \dfrac{\pi }{3}) - \cos (\dfrac{\pi }{6} - x)] = 0 (Shifting the terms)
cos(3xπ3)=cos(π6x)\Rightarrow \cos (3x - \dfrac{\pi }{3}) = \cos (\dfrac{\pi }{6} - x) (Shifting) ---(2)
We know, cosA=cosBA=2nπ±B,nZ\cos A = \cos B \Rightarrow A = 2n\pi \pm B,n \in \mathbb{Z}
\therefore Using this in (2), we get
3xπ3=2nπ±(π6x),nZ3x - \dfrac{\pi }{3} = 2n\pi \pm (\dfrac{\pi }{6} - x),n \in \mathbb{Z}
\therefore Considering two cases, we get
CASE 1 - 3xπ3=2n1π+(π6x),n1Z3x - \dfrac{\pi }{3} = 2{n_1}\pi + (\dfrac{\pi }{6} - x),{n_1} \in \mathbb{Z}
CASE 2 - 3xπ3=2n2π(π6x),n2Z3x - \dfrac{\pi }{3} = 2{n_2}\pi - (\dfrac{\pi }{6} - x),{n_2} \in \mathbb{Z}
Solving for xxin both the cases individually.
From CASE 1, we get
3xπ3=2n1π+(π6x)3x - \dfrac{\pi }{3} = 2{n_1}\pi + (\dfrac{\pi }{6} - x) n1Z{n_1} \in \mathbb{Z}
3xπ3=2n1π+π6x\Rightarrow 3x - \dfrac{\pi }{3} = 2{n_1}\pi + \dfrac{\pi }{6} - x n1Z{n_1} \in \mathbb{Z}
3x+x=2n1π+π6+π3\Rightarrow 3x + x = 2{n_1}\pi + \dfrac{\pi }{6} + \dfrac{\pi }{3} n1Z{n_1} \in \mathbb{Z} (Shifting the terms)
4x=2n1π+π+2π6\Rightarrow 4x = 2{n_1}\pi + \dfrac{{\pi + 2\pi }}{6} n1Z{n_1} \in \mathbb{Z} (Taking LCM)
x=14[2n1π+3π6]\Rightarrow x = \dfrac{1}{4}[2{n_1}\pi + \dfrac{{3\pi }}{6}] n1Z{n_1} \in \mathbb{Z} (Dividing by 44)
x=14[2n1π+π2]\Rightarrow x = \dfrac{1}{4}[2{n_1}\pi + \dfrac{\pi }{2}] n1Z{n_1} \in \mathbb{Z} (Simplifying)
From CASE 2, we get
3xπ3=2n2π(π6x)3x - \dfrac{\pi }{3} = 2{n_2}\pi - (\dfrac{\pi }{6} - x) n2Z{n_2} \in \mathbb{Z}
3xπ3=2n2ππ6+x\Rightarrow 3x - \dfrac{\pi }{3} = 2{n_2}\pi - \dfrac{\pi }{6} + x n2Z{n_2} \in \mathbb{Z} (Opening Brackets)
3xx=2n2ππ6+π3\Rightarrow 3x - x = 2{n_2}\pi - \dfrac{\pi }{6} + \dfrac{\pi }{3} n2Z{n_2} \in \mathbb{Z} (Shifting variables on one side)
2x=2n2π+π+2π6\Rightarrow 2x = 2{n_2}\pi + \dfrac{{ - \pi + 2\pi }}{6} n2Z{n_2} \in \mathbb{Z}
2x=2n2π+π6\Rightarrow 2x = 2{n_2}\pi + \dfrac{\pi }{6} n2Z{n_2} \in \mathbb{Z}
x=12[2n2π+π6]\Rightarrow x = \dfrac{1}{2}[2{n_2}\pi + \dfrac{\pi }{6}] n2Z{n_2} \in \mathbb{Z} (Dividing by 22)
Hence, from the above two cases, we got
x=14[2n1π+π2]x = \dfrac{1}{4}[2{n_1}\pi + \dfrac{\pi }{2}] and x=12[2n2π+π6]x = \dfrac{1}{2}[2{n_2}\pi + \dfrac{\pi }{6}] , where n1,n2Z{n_1},{n_2} \in \mathbb{Z}
Therefore, for x=14[2n1π+π2]x = \dfrac{1}{4}[2{n_1}\pi + \dfrac{\pi }{2}] and x=12[2n2π+π6]x = \dfrac{1}{2}[2{n_2}\pi + \dfrac{\pi }{6}], n1,n2Z{n_1},{n_2} \in \mathbb{Z}, the derivative for the function f(x)f(x)is equal to zero, where f(x)=Sin3x3cos3x+3(cosx3sinx)f(x) = \operatorname{Sin} 3x - \sqrt 3 \cos 3x + 3(\cos x - \sqrt 3 \sin x).

Note: We could have solved the problem without first simplifying f(x)f(x)but that could be very tough and we might get stuck in between the problem. Also, we need to be very thorough with all the formulas for trigonometry otherwise we won’t be able to solve the problem in this way. And, we usually forget to apply chain rule while differentiating the terms, so it should be kept in mind. Usually, we don’t write n1,n2Z{n_1},{n_2} \in \mathbb{Z} but it is important to write.