Solveeit Logo

Question

Mathematics Question on Quadratic Equations

For what values of m can the expression 2x2+mxy+3y25y22x^2 + mxy + 3y^2 - 5y - 2 be expressed as the product of two linear factors

A

0

B

±1\pm\, 1

C

±7\pm\, 7

D

49

Answer

±7\pm\, 7

Explanation

Solution

We have the expression
2x2+mxy+3y25y22x^2 + mxy + 3y^2 - 5y - 2
Comparing the given expression with
ax2+2hxy+by2+2gx+2fy+cax^2 + 2hxy + by^2 + 2gx + 2 fy + c,
we get
a=2,h=m2,b=3,c=2,g=0,f=52a= 2, h = \frac{m}{2} , b=3,c=-2 , g=0, f=- \frac{5}{2}
The given expression is resolvable into linear factors, if
abc+2fghaf2bg2ch2=0abc + 2 fgh - af^{2} -bg^{2} -ch^{2} = 0
(2)(3)(2)+2(0)=2(254)0(2)m24=0\left(2\right)\left(3\right)\left( -2\right) + 2\left(0\right)=2 \left(\frac{25}{4}\right) - 0 -\left(-2\right) \frac{m^{2}}{4} = 0
12252+m22=0\Rightarrow - 12 - \frac{25}{2} + \frac{m^{2}}{2} = 0
m22=492\Rightarrow \frac{m^{2}}{2} = \frac{49}{2}
m2=49\Rightarrow m^{2} = 49
m=±7\Rightarrow m = \pm7