Solveeit Logo

Question

Question: For what values of k will the equation \(x^{2} - 2(1 + 3k)x + 7(3 + 2k) = 0\) have equal roots...

For what values of k will the equation

x22(1+3k)x+7(3+2k)=0x^{2} - 2(1 + 3k)x + 7(3 + 2k) = 0 have equal roots

A

1, –10/9

B

2, –10/9

C

3, –10/9

D

4, –10/9

Answer

2, –10/9

Explanation

Solution

Since roots are equal then [2(1+3k)]2=4.1.7(3+2k)\lbrack - 2(1 + 3k)\rbrack^{2} = 4.1.7(3 + 2k)

1+9k2+6k=21+14k1 + 9k^{2} + 6k = 21 + 14k

9k28k20=09k^{2} - 8k - 20 = 0

Solving, we get k=2,10/9k = 2, - 10/9