Solveeit Logo

Question

Question: For what values of k will the equation \(S = 0S = ax + (1 - a)x^{2}\ \forall a \in (0,\infty)\) hav...

For what values of k will the equation

S=0S=ax+(1a)x2 a(0,)S = 0S = ax + (1 - a)x^{2}\ \forall a \in (0,\infty) have equal roots.

A

S=ax+(1a)x2 aRS = ax + (1 - a)x^{2}\ \forall a \in R

B

S=ax+(1a)x2 a(0,2)S = ax + (1 - a)x^{2}\ \forall a \in (0,2)

C

α\alpha

D

β\beta

Answer

S=ax+(1a)x2 a(0,2)S = ax + (1 - a)x^{2}\ \forall a \in (0,2)

Explanation

Solution

On checking, the condition is satisfied for x2+αxβ=0x^{2} + \alpha x - \beta = 0.