Solveeit Logo

Question

Question: For what values of a and b the intercepts cut off on the coordinate axes by the line \(a x + b y + 8...

For what values of a and b the intercepts cut off on the coordinate axes by the line ax+by+8=0a x + b y + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x3y+6=02 x - 3 y + 6 = 0 on the axes.

A

a=83,b=4a = \frac { 8 } { 3 } , b = - 4

B

a=83,b=4a = - \frac { 8 } { 3 } , b = - 4

C

a=83,b=4a = \frac { 8 } { 3 } , b = 4

D

a=83,b=4a = - \frac { 8 } { 3 } , b = 4

Answer

a=83,b=4a = - \frac { 8 } { 3 } , b = 4

Explanation

Solution

The equation of lines in intercept form are

x8/a+y8/b=1\frac { x } { - 8 / a } + \frac { y } { - 8 / b } = 1 .....(i)

x3+y2=1\frac { x } { - 3 } + \frac { y } { 2 } = 1 .....(ii)

According to the condition,

8a=(3)- \frac { 8 } { a } = - ( - 3 )

a=83\Rightarrow a = - \frac { 8 } { 3 } and 8b=(2)b=4- \frac { 8 } { b } = - ( 2 ) \Rightarrow b = 4.