Question
Question: For what value of x, the matrix \(\begin{bmatrix} 3 - x & 2 & 2 \\ 2 & 4 - x & 1 \\ - 2 & - 4 & - 1...
For what value of x, the matrix $\begin{bmatrix} 3 - x & 2 & 2 \ 2 & 4 - x & 1 \
- 2 & - 4 & - 1 - x \end{bmatrix}$ is singular.
A
x = 1, 2
B
x = 0, 2
C
x = 0, 1
D
x = 0, 3.
Answer
x = 0, 3.
Explanation
Solution
Since, the given matrix is singular
$\Rightarrow \left| \begin{matrix} 3 - x & 2 & 2 \ 2 & 4 - x & 1 \
- 2 & - 4 & - 1 - x \end{matrix} \right| = 0R<sub>2</sub>+R_{3}$
$\Rightarrow \left| \begin{matrix} 3 - x & 2 & 2 \ 0 & - x & - x \
- 2 & - 4 & - 1 - x \end{matrix} \right| = 0\Rightarrow x\left| \begin{matrix} 3 - x & 2 & 2 \ 0 & 1 & 1 \ 2 & 4 & 1 + x \end{matrix} \right| = 0$
⇒ x {(3 – x) (1 + x – 4) – o + 2 (2 – 2)} = 0
⇒ x (3 – x) (x – 3) = 0 ⇒ x = 0, 3