Solveeit Logo

Question

Question: For what value of x, the matrix \(\begin{bmatrix} 3 - x & 2 & 2 \\ 2 & 4 - x & 1 \\ - 2 & - 4 & - 1...

For what value of x, the matrix $\begin{bmatrix} 3 - x & 2 & 2 \ 2 & 4 - x & 1 \

  • 2 & - 4 & - 1 - x \end{bmatrix}$ is singular.
A

x = 1, 2

B

x = 0, 2

C

x = 0, 1

D

x = 0, 3.

Answer

x = 0, 3.

Explanation

Solution

Since, the given matrix is singular

$\Rightarrow \left| \begin{matrix} 3 - x & 2 & 2 \ 2 & 4 - x & 1 \

  • 2 & - 4 & - 1 - x \end{matrix} \right| = 0R<sub>2</sub>+R<sub>2</sub> +R_{3}$

$\Rightarrow \left| \begin{matrix} 3 - x & 2 & 2 \ 0 & - x & - x \

  • 2 & - 4 & - 1 - x \end{matrix} \right| = 0 \Rightarrow x\left| \begin{matrix} 3 - x & 2 & 2 \ 0 & 1 & 1 \ 2 & 4 & 1 + x \end{matrix} \right| = 0$

\Rightarrow x {(3 – x) (1 + x – 4) – o + 2 (2 – 2)} = 0

\Rightarrow x (3 – x) (x – 3) = 0 \Rightarrow x = 0, 3