Solveeit Logo

Question

Question: For what value of n, the geometric mean of a and b is \(\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} +...

For what value of n, the geometric mean of a and b is an+1+bn+1an+bn\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}.

Explanation

Solution

Hint: In this question use the concept that if we have two numbers a and b then the geometric mean of them will be ab\sqrt {ab} , compare the given geometric mean with this standard mean to get the value of n.

Complete step-by-step answer:
Given geometric mean (G.M) of (a and b) is an+1+bn+1an+bn\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}.............. (1)
Now as we know that the G.M of (a) and (b) is ab\sqrt {ab} ...................... (2)
Therefore both equations (1) and (2) should be equal so equate them we have.
an+1+bn+1an+bn=ab\Rightarrow \dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \sqrt {ab}
Now simplify the above equation we have,
an+1+bn+1=a12b12(an+bn)\Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}\left( {{a^n} + {b^n}} \right)
Now again simplify we have,
an+1+bn+1=a12b12an+a12b12bn\Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{a^n} + {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{b^n}
an+1+bn+1=an+12b12+a12bn+12\Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} + {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}}
Now shifting the variables we have,
an+1an+12b12=a12bn+12bn+1\Rightarrow {a^{n + 1}} - {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} = {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}} - {b^{n + 1}}
Now take an+12{a^{n + \dfrac{1}{2}}} common from L.H.S terms and bn+12{b^{n + \dfrac{1}{2}}} common from R.H.S terms we have,
an+12(an+1an+12b12)=bn+12(a12bn+1bn+12)\Rightarrow {a^{n + \dfrac{1}{2}}}\left( {\dfrac{{{a^{n + 1}}}}{{{a^{n + \dfrac{1}{2}}}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - \dfrac{{{b^{n + 1}}}}{{{b^{n + \dfrac{1}{2}}}}}} \right)
Now simplify the above equation we have,
an+12(an+1n12b12)=bn+12(a12bn+1n12)\Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{n + 1 - n - \dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{n + 1 - n - \dfrac{1}{2}}}} \right)
an+12(a12b12)=bn+12(a12b12)\Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)
Now cancel out the common terms from L.H.S and R.H.S we have,
an+12=bn+12\Rightarrow {a^{n + \dfrac{1}{2}}} = {b^{n + \dfrac{1}{2}}}
an+12bn+12=1\Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = 1
Now as we know 1 can be written as (a/b)0 so use this property in above equation we have,
an+12bn+12=(ab)0\Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = {\left( {\dfrac{a}{b}} \right)^0}
(ab)n+12=(ab)0\Rightarrow {\left( {\dfrac{a}{b}} \right)^{^{n + \dfrac{1}{2}}}} = {\left( {\dfrac{a}{b}} \right)^0}
So on comparing we have,
n+12=0\Rightarrow n + \dfrac{1}{2} = 0
n=12\Rightarrow n = - \dfrac{1}{2}
So 12 - \dfrac{1}{2} is the required value of (n) for which the G.M of (a) and (b) isan+1+bn+1an+bn\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}.
So this is the required answer.

Note: In general there are two means which are most frequently used that is arithmetic mean and the geometric means. A.M between two numbers a and b is a+b2\dfrac{{a + b}}{2}, the formula of geometric mean is explained above but we can generalize it to n terms as well, the G.M of x1,x2,x3,x4..........xn=nx1,x2,x3,x4..........xn{x_1},{x_2},{x_3},{x_4}..........{x_n}{ = ^n}\sqrt {{x_1},{x_2},{x_3},{x_4}..........{x_n}} .