Solveeit Logo

Question

Question: For what value of k does the equation \[{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} ...

For what value of k does the equation 12x2+2kxy + 2y2+11x5y + 2 = 0{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} + 11x - 5{\text{y + 2 = 0}} represent a pair of lines?

Explanation

Solution

Hint: In order to solve to this problem, we must remember the condition when general equation of 2nd degree ax2+2hxy + by2+2gx+2fy + c = 0{\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}} represent a pair of lines.

Complete step-by-step answer:
We know that,
A general equation of 2nd degree ax2+2hxy + by2+2gx+2fy + c = 0{\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}} represent a pair of lines if {\text{D = }}\left| {\begin{array}{*{20}{c}} {\text{a}}&{\text{h}}&{\text{g}} \\\ {\text{h}}&{\text{b}}&{\text{f}} \\\ {\text{g}}&{\text{f}}&{\text{c}} \end{array}} \right| = 0
We have,
12x2+2kxy + 2y2+11x5y + 2 = 0{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} + 11x - 5{\text{y + 2 = 0}}
So on comparing this with general equation of 2nd degree ax2+2hxy + by2+2gx+2fy + c = 0{\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}} we found

∴a=12, h=k, b=2, g=112\dfrac{{11}}{2}, f = 52\dfrac{{ - 5}}{2} and c=2
{\text{D = }}\left| {\begin{array}{*{20}{c}} {12}&{\text{k}}&{\dfrac{{11}}{2}} \\\ {\text{k}}&2&{\dfrac{{ - 5}}{2}} \\\ {\dfrac{{11}}{2}}&{\dfrac{{ - 5}}{2}}&2 \end{array}} \right| = 0
Expanding we get

12(4254)k(2k + 554)+112(5k211)=0 \Rightarrow 12\left( {4 - \dfrac{{25}}{4}} \right) - {\text{k}}\left( {2{\text{k + }}\dfrac{{55}}{4}} \right) + \dfrac{{11}}{2}\left( {\dfrac{{ - 5{\text{k}}}}{2} - 11} \right) = 0
On further solving
12(94)2k255k455k41212=0\Rightarrow 12\left( { - \dfrac{9}{4}} \right) - 2{{\text{k}}^2} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{121}}{2} = 0
272k2k(554+554)1212=0\Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{55}}{4} + \dfrac{{55}}{4}} \right) - \dfrac{{121}}{2} = 0
On simplifying
272k2k(1104)1212=0\Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{110}}{4}} \right) - \dfrac{{121}}{2} = 0
multiply both sides by Minus 1
2k2 + k(1104)+1752=0\Rightarrow 2{{\text{k}}^2}{\text{ + k}}\left( {\dfrac{{110}}{4}} \right) + \dfrac{{175}}{2} = 0
8k2 + 110k+350=0\Rightarrow {\text{8}}{{\text{k}}^2}{\text{ + 110k}} + 350 = 0
On taking 2 common
4k2 + 55k+175=0\Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0

Here we have, a quadratic equation 4k2 + 55k+175=0 \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0 in terms of k
Sridharacharya formula is actually the quadratic formula, used for finding the roots of a quadratic equation ax2 + bx + c = 0{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}} , where a not equal to 0 , & a, b, c are real coefficients of the equation ax2 + bx + c = 0{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}
Being quadratic it has 2 roots.
X = \dfrac{{\left( { - {\text{b + }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}{\text{ & }}\dfrac{{\left( { - {\text{b - }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}} (1)

On comparing the given equation 4k2 + 55k+175=0 \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0 with the general quadratic equation ak2 + bk + c = 0{\text{a}}{{\text{k}}^2}{\text{ + bk + c = 0}} we got values of coefficients a = 4, b = 55, c = 175
On putting the value of coefficients a, b, c in equation (1)
{\text{k = }}\dfrac{{\left( { - (55){\text{ + }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}{\text{ & }}\dfrac{{\left( { - (55){\text{ - }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}
{\text{k = }}\dfrac{{\left( {{\text{ - 55 + }}\sqrt {225} } \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}\sqrt {225} } \right)}}{8}
{\text{k = }}\dfrac{{\left( {{\text{ - 55 + 15}}} \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}15} \right)}}{8}
{\text{k = - 5 & }}\dfrac{{\left( {{\text{ - 35}}} \right)}}{4}
We know that if discriminant D 0 \geqslant {\text{0}} then it will give real and distinct roots.
Here D=  = (55)24×8×(175) = 225 0{\text{ = }}\sqrt {{{(55)}^2} - 4 \times 8 \times (175)} {\text{ = }}\sqrt {225} {\text{ }} \geqslant {\text{0}} Therefore we got two distinct real roots {{\text{k}}_1}{\text{ = }} - 5{\text{ & }}{{\text{k}}_2}{\text{ = }}\dfrac{{ - 35}}{4}
{{\text{k}}_1}{\text{ = - 5 & }}{{\text{k}}_2}{\text{ = - 8}}{\text{.75}}
Hence we got two values of k for a pair of straight lines.

Note: Whenever we came up with this type of problem where we are given general equation of 2nd degree then to find the unknown values just like k in above question, we can also use the condition = abc + 2fgh - af2bg2ch2=0\vartriangle = {\text{ abc + 2fgh - a}}{{\text{f}}^2} - {\text{b}}{{\text{g}}^2} - {\text{c}}{{\text{h}}^2} = 0. Hence we can get the required value of k.