Solveeit Logo

Question

Question: For what triplets of real numbers (a, b, c) with a ≠ 0 the function: $f(x) = \begin{cases} x & x \l...

For what triplets of real numbers (a, b, c) with a ≠ 0 the function:

f(x)={xx1ax2+bx+cotherwisef(x) = \begin{cases} x & x \leq 1 \\ ax^2 + bx + c & \text{otherwise} \end{cases}

is differentiable for all real x ?

A

{(a, 1 - 2a, a) | a ∈ R, a ≠ 0}

B

{(a, 1 – 2a, c) | a, c∈ R, a ≠ 0}

C

{(a, b, c) | a, b, c ∈ R, a + b + c = 1}

D

{(a, 1 – 2a, 0) | a ∈ R, a ≠ 0}

Answer

(A) {(a, 1 - 2a, a) | a ∈ R, a ≠ 0}

Explanation

Solution

For the function f(x)f(x) to be differentiable for all real xx, it must be continuous and differentiable at x=1x=1.

  1. Continuity at x=1x=1: f(1)=f(1+)=f(1)f(1^-) = f(1^+) = f(1). 1=a(1)2+b(1)+c    a+b+c=11 = a(1)^2 + b(1) + c \implies a+b+c=1.

  2. Differentiability at x=1x=1: f(1)=f(1+)f'(1^-) = f'(1^+). f(x)=1f'(x) = 1 for x<1x<1, so f(1)=1f'(1^-)=1. f(x)=2ax+bf'(x) = 2ax+b for x>1x>1, so f(1+)=2a+bf'(1^+)=2a+b. Thus, 2a+b=12a+b=1.

Solving the system of equations: b=12ab = 1-2a (from 2a+b=12a+b=1) Substitute bb into a+b+c=1a+b+c=1: a+(12a)+c=1    a+1+c=1    c=aa + (1-2a) + c = 1 \implies -a+1+c=1 \implies c=a. Given a0a \neq 0, the triplets are of the form (a,12a,a)(a, 1-2a, a).