Question
Question: For what triplets of real numbers (a, b, c) with a ≠ 0 the function: $f(x) = \begin{cases} x & x \l...
For what triplets of real numbers (a, b, c) with a ≠ 0 the function:
f(x)={xax2+bx+cx≤1otherwise
is differentiable for all real x ?

A
{(a, 1 - 2a, a) | a ∈ R, a ≠ 0}
B
{(a, 1 – 2a, c) | a, c∈ R, a ≠ 0}
C
{(a, b, c) | a, b, c ∈ R, a + b + c = 1}
D
{(a, 1 – 2a, 0) | a ∈ R, a ≠ 0}
Answer
(A) {(a, 1 - 2a, a) | a ∈ R, a ≠ 0}
Explanation
Solution
For the function f(x) to be differentiable for all real x, it must be continuous and differentiable at x=1.
-
Continuity at x=1: f(1−)=f(1+)=f(1). 1=a(1)2+b(1)+c⟹a+b+c=1.
-
Differentiability at x=1: f′(1−)=f′(1+). f′(x)=1 for x<1, so f′(1−)=1. f′(x)=2ax+b for x>1, so f′(1+)=2a+b. Thus, 2a+b=1.
Solving the system of equations: b=1−2a (from 2a+b=1) Substitute b into a+b+c=1: a+(1−2a)+c=1⟹−a+1+c=1⟹c=a. Given a=0, the triplets are of the form (a,1−2a,a).