Solveeit Logo

Question

Question: For what and only what values of \(\alpha \) lying between \(0\) and \(\pi \) is the inequality \(\s...

For what and only what values of α\alpha lying between 00 and π\pi is the inequality sinαcos3α>sin3αcosα\sin \alpha {\cos ^3}\alpha > {\sin ^3}\alpha \cos \alpha valid?
A.α(0,π4)\alpha \in \left( {0,\dfrac{\pi }{4}} \right)
B.α(0,π2)\alpha \in \left( {0,\dfrac{\pi }{2}} \right)
C.α(π4,π2)\alpha \in \left( {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right)
D.None of these

Explanation

Solution

We will take all the trigonometric identities in the inequality to one side and solve it by using standard trigonometric identities. Since, the interval of α\alpha is given, we can use that and find the actual interval α\alpha for which the inequality sinαcos3α>sin3αcosα\sin \alpha {\cos ^3}\alpha > {\sin ^3}\alpha \cos \alpha is valid.

Complete answer:
The given inequality is
sinαcos3α>sin3αcosα\sin \alpha {\cos ^3}\alpha > {\sin ^3}\alpha \cos \alpha .
Taking the sin3αcosα{\sin ^3}\alpha \cos \alpha to the left side of the inequality,
\Rightarrow sinαcos3αsin3αcosα>0\sin \alpha {\cos ^3}\alpha - {\sin ^3}\alpha \cos \alpha > 0
Taking sinα\sin \alpha and cosα\cos \alpha common from the left side of the inequality,
\Rightarrow sinαcosα(cos2αsin2α)>0\sin \alpha \cos \alpha ({\cos ^2}\alpha - {\sin ^2}\alpha ) > 0
We know that, cos2αsin2α=cos2α{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha ,
Substituting the value of cos2αsin2α=cos2α{\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha ,
\Rightarrow \Rightarrow sinαcosα(cos2α)>0\sin \alpha \cos \alpha (\cos 2\alpha ) > 0
Multiplying and dividing the left side of the inequality by 22,
\Rightarrow 12×2×sinαcosα(cos2α)>0\dfrac{1}{2} \times 2 \times \sin \alpha \cos \alpha (\cos 2\alpha ) > 0
We know that, 2sinαcosα=sin2α2\sin \alpha \cos \alpha = \sin 2\alpha
Substituting the value of 2sinαcosα=sin2α2\sin \alpha \cos \alpha = \sin 2\alpha ,
\Rightarrow 12×sin2α.cos2α>0\dfrac{1}{2} \times \sin 2\alpha .\cos 2\alpha > 0
Again, Multiplying and dividing the left side of the inequality by 22,
\Rightarrow 12×12×2×sin2α.cos2α>0\dfrac{1}{2} \times \dfrac{1}{2} \times 2 \times \sin 2\alpha .\cos 2\alpha > 0
\Rightarrow 14×2×sin2α.cos2α>0\dfrac{1}{4} \times 2 \times \sin 2\alpha .\cos 2\alpha > 0
We know that, 2sin2αcos2α=sin4α2\sin 2\alpha \cos 2\alpha = \sin 4\alpha
Substituting the value of 2sin2αcos2α=sin4α2\sin 2\alpha \cos 2\alpha = \sin 4\alpha ,
\Rightarrow 14×sin4α>0\dfrac{1}{4} \times \sin 4\alpha > 0
Taking 44 to the right side of the inequality,
\Rightarrow sin4α>0×4\sin 4\alpha > 0 \times 4
\Rightarrow sin4α>0\sin 4\alpha > 0
Since, 0<α<π0 < \alpha < \pi …. (Given)
We can say that,
\Rightarrow 4α(0,π)4\alpha \in (0,\pi )
Dividing through by 44 ,
\Rightarrow α(04,π4)\alpha \in \left( {\dfrac{0}{4},\dfrac{\pi }{4}} \right)
\Rightarrow α(0,π4)\alpha \in \left( {0,\dfrac{\pi }{4}} \right)
For value of α(0,π4)\alpha \in \left( {0,\dfrac{\pi }{4}} \right) the inequality sinαcos3α>sin3αcosα\sin \alpha {\cos ^3}\alpha > {\sin ^3}\alpha \cos \alpha valid.
Therefore, the correct option is option A. α(0,π4)\alpha \in \left( {0,\dfrac{\pi }{4}} \right).

Note:
An inequality involving trigonometric functions of an unknown angle is called trigonometric inequality. A trig inequality is an inequality in preferred form: R(x) > 0 (or < 0) that consists of one or some trigonometric functions of the variable arc x. Fixing the inequality R(x) means finding all of the values of the variable arc x whose trig functions make the inequality R(x) real. This kind of value of x represents the answer set of the trig inequality R(x). Answer sets of trig inequalities are expressed in durations.