Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

For what and only what value of α\alpha lying between 0 and π\pi is the inequality. sinα.cos3α>sin3αcosα\sin \alpha . \cos^3 \alpha > \sin^3\alpha \cos \alpha valid ?

A

α(0,π4)or(3π4,π)\alpha\in\left(0,\frac{\pi}{4}\right)or\left(\frac{3\pi}{4},\pi\right)

B

α(0,π2)or(3π2,π)\alpha\in\left(0,\frac{\pi}{2}\right)or\left(\frac{3\pi}{2},\pi\right)

C

α(π4,π2)or(3π2,3π4)\alpha\in\left(\frac{\pi}{4},\frac{\pi}{2}\right)or\left(\frac{3\pi}{2},\frac{3\pi}{4}\right)

D

none of these.

Answer

α(0,π4)or(3π4,π)\alpha\in\left(0,\frac{\pi}{4}\right)or\left(\frac{3\pi}{4},\pi\right)

Explanation

Solution

We have sinαcos2α>sin3αcosα\sin\, \alpha \cos^2\,\alpha > \sin^3\alpha \, \cos\, \alpha sinαcosα[cos2αsin2α]>0\Rightarrow \, \sin\, \alpha \, \cos\, \alpha [\cos^2\alpha - \sin^2\alpha ] > 0 \Rightarrow cos3αsinα(1=tan2α)>0\cos^3 \alpha \, \sin \, \alpha (1 =- \tan^2 \, \alpha) > 0 [sinα>0for0<α<π][ \because \, \sin \, \alpha > 0 \, for \, 0 < \alpha < \pi ] \Rightarrow cosα(1tan2α)0\cos \, \alpha (1 - \tan^2 \alpha) 0 \Rightarrow cosα>0\cos \,\alpha > 0 and 1tan2α>0i.e.,tan2α<11 - \tan^2 \alpha > 0 \, i.e., \, \tan^2 \alpha < 1 or cosα<0\cos \, \alpha < 0 and 1tan2α<0i.e.,tan2α>11 - \tan^2 \alpha < 0 \, i.e., \, \tan^2 \alpha >1 \Rightarrow α(0,π4)\alpha \, \in \left( 0, \frac{\pi}{4} \right) or α(3π4,π)\alpha \, \in \left( \frac{3 \pi}{4} , \pi \right)