Question
Question: For vector \(\overrightarrow{a}\), if \(\left| \overrightarrow{a} \right|=a\), then write the value ...
For vector a, if a=a, then write the value of (a×i^)2+(a×j^)2+(a×k^)2.
Solution
First find the value of a in terms of x, y, z by applying dot product on a. After that find the values of (a×i^), (a×j^) and (a×k^) by applying cross product rule. Then square each term and add them. Now take commonly from them and substitute the values derived from the a.
Complete step by step answer:
Given: a=a
Let the vector be a=xi^+yj^+zk^.
Since a=a. Then,
⇒(xi^)2+(yj^)2+(zk^)2=a
As we know the dot product of any unit vector with any other is zero, i^⋅j^=j^⋅k^=k^⋅i^=0. So,
⇒x2+y2+z2=a2
Square both sides of the equation,
⇒x2+y2+z2=a2 …………….….. (1)
Now,
⇒a×i^=(xi^+yj^+zk^)×i^
Multiply the terms on the right side,
⇒a×i^=xi^×i^+yj^×i^+zk^×i^
Since the cross product must be perpendicular to the two-unit vectors, it must be equal to the other unit vector or the opposite of that unit vector. The cross product of any unit vector with itself is zero, i^×i^=j^×j^=k^×k^=0.
⇒a×i^=x(0)+y(−k^)+z(j^)
Multiply the terms,
⇒a×i^=−yk^+zj^
Similarly,
⇒a×j^=xk^−zi^
⇒a×k^=−xj^+yi^
Substitute the values,
⇒(a×i^)2+(a×j^)2+(a×k^)2=(−yk^+zj^)2+(xk^−zi^)2+(−xj^+yi^)2
As we know the dot product of any unit vector with any other is zero, i^⋅j^=j^⋅k^=k^⋅i^=0. So,
⇒(a×i^)2+(a×j^)2+(a×k^)2=(−yk^)2+(zj^)2+(xk^)2+(−zi^)2+(−xj^)2+(yi^)2
Square the terms,
⇒(a×i^)2+(a×j^)2+(a×k^)2=y2+z2+x2+z2+x2+y2
Add the lime terms,
⇒(a×i^)2+(a×j^)2+(a×k^)2=2x2+2y2+2z2
Take 2 commons from the right side,
⇒(a×i^)2+(a×j^)2+(a×k^)2=2(x2+y2+z2)
Substitute the value from equation (1),
⇒(a×i^)2+(a×j^)2+(a×k^)2=2a2
Hence, the value of (a×i^)2+(a×j^)2+(a×k^)2 is 2a2.
Note:
The vector can be multiplied by,
Dot product:- The dot product of two vectors is the magnitude of one time the projection of the second onto the first.
Since a vector has no projection perpendicular to itself, the dot product of any unit vector with any other is zero.
i^⋅i^=j^⋅j^=k^⋅k^=1
Cross product:- The cross product of two vectors is the area of the parallelogram between them.
The cross product of any unit vector with itself is zero.
i^×i^=j^×j^=k^×k^=0