Solveeit Logo

Question

Question: For two unimodular complex numbers \({{z}_{1}}\) and \({{z}_{2}}\), the value of \({{\left( \begin...

For two unimodular complex numbers z1{{z}_{1}} and z2{{z}_{2}}, the value of
(zˉ1z2 zˉ2z1 )1(z1z2 zˉ2zˉ1 )1{{\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}} is equal to?
A. (z1z2 zˉ1zˉ2 )\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ {{{\bar{z}}}_{1}} & {{{\bar{z}}}_{2}} \\\ \end{matrix} \right)
B. (10 01 )\left( \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right)
C. (120 012 )\left( \begin{matrix} \dfrac{1}{2} & 0 \\\ 0 & \dfrac{1}{2} \\\ \end{matrix} \right)
D. None of these

Explanation

Solution

Hint: In this question, the product of inverses of two matrices are needed to be found out. For that we can use the formula for the inverse of the product of two matrices and then do suitable matrix multiplication to obtain the answer to this question.

Complete step-by-step answer:
In this question, as the product of the inverses of two matrices are given, we need to use the formula that for two matrices A and B, the inverse of their product is given by
(AB)1=B1A1.........................(1.1){{\left( AB \right)}^{-1}}={{B}^{-1}}{{A}^{-1}}.........................(1.1)
In this case taking A=(z1z2 zˉ2zˉ1 )A=\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right) and B=(zˉ1z2 zˉ2z1 )B=\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right) in equation (1.1), we get
(zˉ1z2 zˉ2z1 )1(z1z2 zˉ2zˉ1 )1=((z1z2 zˉ2zˉ1 )(zˉ1z2 zˉ2z1 ))1...................(1.2){{\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}}={{\left( \left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right) \right)}^{-1}}...................(1.2)
Now, the matrix product between two general matrices is given by
(a11a12 a21a22 )(b11b12 b21b22 )=(a11b11+a12b21a11b12+a12b22 a21b11+a22b21a21b12+a22b22 )..................(1.3)\left( \begin{matrix} {{a}_{11}} & {{a}_{12}} \\\ {{a}_{21}} & {{a}_{22}} \\\ \end{matrix} \right)\left( \begin{matrix} {{b}_{11}} & {{b}_{12}} \\\ {{b}_{21}} & {{b}_{22}} \\\ \end{matrix} \right)=\left( \begin{matrix} {{a}_{11}}{{b}_{11}}+{{a}_{12}}{{b}_{21}} & {{a}_{11}}{{b}_{12}}+{{a}_{12}}{{b}_{22}} \\\ {{a}_{21}}{{b}_{11}}+{{a}_{22}}{{b}_{21}} & {{a}_{21}}{{b}_{12}}+{{a}_{22}}{{b}_{22}} \\\ \end{matrix} \right)..................(1.3)
So, evaluating (1.2) using the formula given in equation (1.3), we obtain

{{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}}={{\left( \left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right) \right)}^{-1}}={{\left( \begin{matrix} {{z}_{1}}{{{\bar{z}}}_{1}}+{{z}_{2}}{{{\bar{z}}}_{2}} & -{{z}_{1}}{{z}_{2}}+{{z}_{2}}{{z}_{1}} \\\ -{{{\bar{z}}}_{2}}{{{\bar{z}}}_{1}}+{{{\bar{z}}}_{1}}{{{\bar{z}}}_{2}} & -{{{\bar{z}}}_{2}}{{z}_{2}}+{{{\bar{z}}}_{1}}{{z}_{1}} \\\ \end{matrix} \right)}^{-1}}...................(1.4)$$ Now, as $${{z}_{1}}$$ and $${{z}_{2}}$$ are given to be unimodular, we have $${{z}_{1}}{{\bar{z}}_{1}}={{\bar{z}}_{1}}{{z}_{1}}=1$$ and $${{z}_{2}}{{\bar{z}}_{2}}={{\bar{z}}_{2}}{{z}_{2}}=1$$. Using this in equation (1.4), we obtain $${{\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}}={{\left( \begin{matrix} {{z}_{1}}{{{\bar{z}}}_{1}}+{{z}_{2}}{{{\bar{z}}}_{2}} & -{{z}_{1}}{{z}_{2}}+{{z}_{2}}{{z}_{1}} \\\ -{{{\bar{z}}}_{2}}{{{\bar{z}}}_{1}}+{{{\bar{z}}}_{1}}{{{\bar{z}}}_{2}} & -{{{\bar{z}}}_{2}}{{z}_{2}}+{{{\bar{z}}}_{1}}{{z}_{1}} \\\ \end{matrix} \right)}^{-1}}={{\left( \begin{matrix} 1+1 & 0 \\\ 0 & 1+1 \\\ \end{matrix} \right)}^{-1}}={{\left( \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ \end{matrix} \right)}^{-1}}..............(1.5)$$ Now, the inverse of a general $2\times 2$ matrix is given by ${{\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right)}^{-1}}=\dfrac{1}{ad-bc}\left( \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right)..................(1.6)$ Therefore, by using the formula given in equation (1.6) in equation (1.5), we obtain $$\begin{aligned} & {{\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}}={{\left( \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ \end{matrix} \right)}^{-1}}=\dfrac{1}{2\times 2-0\times 0}\left( \begin{matrix} 2 & -0 \\\ -0 & 2 \\\ \end{matrix} \right)=\dfrac{1}{4}\left( \begin{matrix} 2 & 0 \\\ 0 & 2 \\\ \end{matrix} \right) \\\ & =\left( \begin{matrix} \dfrac{2}{4} & 0 \\\ 0 & \dfrac{2}{4} \\\ \end{matrix} \right)=\left( \begin{matrix} \dfrac{1}{2} & 0 \\\ 0 & \dfrac{1}{2} \\\ \end{matrix} \right) \\\ \end{aligned}$$ As when a number is multiplied to a matrix, it gets multiplied in all its components. Therefore, we obtain the answer to the following question as $${{\left( \begin{matrix} {{{\bar{z}}}_{1}} & -{{z}_{2}} \\\ {{{\bar{z}}}_{2}} & {{z}_{1}} \\\ \end{matrix} \right)}^{-1}}{{\left( \begin{matrix} {{z}_{1}} & {{z}_{2}} \\\ -{{{\bar{z}}}_{2}} & {{{\bar{z}}}_{1}} \\\ \end{matrix} \right)}^{-1}}=\left( \begin{matrix} \dfrac{1}{2} & 0 \\\ 0 & \dfrac{1}{2} \\\ \end{matrix} \right)$$ Which matches option (c). Hence, option (c) is the correct answer. Note: We should be careful that we have to take the overall inverse in the last term of equation (1.4) as just multiplication of the matrices in reverse order does not give the inverse of their product. We have to take the inverse of the multiplication of the matrices in reverse order to find the inverse of their product as shown in equation (1.1).