Solveeit Logo

Question

Question: For two matrices $A = \begin{bmatrix} 3 & -6 & -1 \\ 2 & -5 & -1 \\ -2 & 4 & 1 \end{bmatrix}$ and $B...

For two matrices A=[361251241]A = \begin{bmatrix} 3 & -6 & -1 \\ 2 & -5 & -1 \\ -2 & 4 & 1 \end{bmatrix} and B=[121011203]B = \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 2 & 0 & 3 \end{bmatrix}, find the product ABAB and hence solve the system of equations:

3x6yz=33x - 6y - z = 3 2x5yz+2=02x - 5y - z + 2 = 0 2x+4y+z=5-2x + 4y + z = 5

Answer

The product ABAB is the identity matrix I=[100010001]I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, and the solution to the system of equations is x=2x=2, y=3y=-3, z=21z=21.

Explanation

Solution

First, calculate the product ABAB. If AB=IAB=I, then BB is the inverse of AA (A1=BA^{-1}=B). The system of equations can be written as AX=CAX=C. The solution is X=A1CX=A^{-1}C. Substituting A1=BA^{-1}=B, we get X=BCX=BC. Calculate BCBC to find the values of x,y,zx, y, z. AB=[100010001]AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} AX=[361251241][xyz]=[325]AX = \begin{bmatrix} 3 & -6 & -1 \\ 2 & -5 & -1 \\ -2 & 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} X=BC=[121011203][325]=[2321]X = BC = \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 21 \end{bmatrix}