Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

For two groups of 15 sizes each, mean and variance of first group is 12, 14 respectively, and second group has mean 14 and variance of σ2. If combined variance is 13 then find variance of second group?

A

9

B

11

C

10

D

12

Answer

10

Explanation

Solution

xˉ\bar{x} = 12, σ12\sigma _{1}^{2} = 14, yˉ\bar{y} = 12, σ22\sigma _{2}^{2} = σ2\sigma ^{2}, n1 = n2 = 15
σ12\sigma _{1}^{2} = 14 = xi215(12)2xi2=2370,xi=180\sum \frac{x_{i}^{2}}{15}-(12)^{2}\Rightarrow \sum x_{i}^{2}=2370, \sum x_{i}=180
σ22=yi215(14)2,yi=210\sigma _{2}^{2}=\sum \frac{y_{i}^{2}}{15}-(14)^{2}, \sum y_{i}=210
13 = xi2yi230(15xˉ+15yˉ30)2\frac{\sum x_{i}^{2}\sum y_{i}^{2}}{30}-(\frac{15\bar{x}+15\bar{y}}{30})^{2}
2370+yi230(13)2\frac{2370+\sum y_{i}^{2}}{30}-(13)^{2}
yi2=3090σ22=309015(14)2=10\sum y_{i}^{2}=3090\Rightarrow \sigma _{2}^{2}=\frac{3090}{15}-(14)^{2}=10