Solveeit Logo

Question

Mathematics Question on Probability

For two given events AA and B,P(AB)B, P(A \cap B) is

A

not less than P(A)+P(B)1P(A) + P(B) - 1

B

not greater than P(A)+P(B)P(A) + P(B)

C

equal to P(A)+P(B)P(AB)P(A) + P(B) - P(A \cup B)

D

equal to P(A)+P(B)+P(AB)P(A) + P(B) + P(A \cup B )

Answer

equal to P(A)+P(B)P(AB)P(A) + P(B) - P(A \cup B)

Explanation

Solution

We know that,
P(AB)=P(A)+P(B)P(AB)P (A \cap B) = P(A) + P(B) - P(A \cup B)
Also, P(AB)1P (A \cup B) \le 1
P(AB)minP ( A \cap B)_min , when P(AB)max=1P ( A \cup B)_max = 1
P(AB)P(A)+P(B)l\Rightarrow P ( A \cap B ) \ge P ( A ) + P ( B ) - l
\therefore \, Option (a) is true.
Again \hspace30mm P(A \cup B) \ge 0
P(AB)max,whenP(AB)min=0\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P(A \cap B)_{max} , \, when \, \, P(A \cup B)_{min}=0
P(AB)P(A)+P(B)\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P(A \cap B) \le \, P(A)+P(B)
\therefore \, \, \, Option (b) is true
Also, P(AB)=P(A)+P(B)P(AB.)P(A \cap B)=P(A)+P(B)-P(A \cup B.) Thus, (c) is
also correct.
Hence, (a), (b), (c) are correct options .