Solveeit Logo

Question

Question: For two events A and B, if \(P ( A ) = P \left( \frac { A } { B } \right) = \frac { 1 } { 4 }\) and ...

For two events A and B, if P(A)=P(AB)=14P ( A ) = P \left( \frac { A } { B } \right) = \frac { 1 } { 4 } and P(BA)=12P \left( \frac { B } { A } \right) = \frac { 1 } { 2 } then

A

A and B are independent

B

P(AB)=34P \left( \frac { A ^ { \prime } } { B } \right) = \frac { 3 } { 4 }

C

P(BA)=12P \left( \frac { B ^ { \prime } } { A ^ { \prime } } \right) = \frac { 1 } { 2 }

D

All of the above

Answer

All of the above

Explanation

Solution

are independent as P(A)=P(AB)P ( A ) = P \left( \frac { A } { B } \right)

P(AB)=114=34P \left( \frac { A ^ { \prime } } { B } \right) = 1 - \frac { 1 } { 4 } = \frac { 3 } { 4 } as A,BA , B are independent

A,B\Rightarrow A ^ { \prime } , B are independent.

P(BA)=P(B)=112=12P \left( \frac { B ^ { \prime } } { A ^ { \prime } } \right) = P \left( B ^ { \prime } \right) = 1 - \frac { 1 } { 2 } = \frac { 1 } { 2 }