Solveeit Logo

Question

Mathematics Question on Statistics

For two data sets, each of size 5, the variances are given to be 4 and 5 and the corresponding means are given to be 2 and 4, respectively. The variance of the combined data set is

A

112\frac{11}{2}

B

6

C

132\frac{13}{2}

D

52\frac{5}{2}

Answer

112\frac{11}{2}

Explanation

Solution

σx2=4,σy2=5,x=2,y=4\sigma^{2}_{x} = 4 , \sigma^{2}_{y} = 5 , x = 2, y=4 15xi2(2)2=4;15yi2(4)2=5 \frac{1}{5} \sum x_{i}^{2} - \left(2\right)^{2} = 4; \frac{1}{5} \sum y_{i}^{2} - \left(4\right)^{2} = 5 xi2=40;yi2=105 \sum x_{i}^{2} = 40 ; \sum y_{i}^{2} = 105 (xi2+yi2)=145\Rightarrow\sum\left(x_{i}^{2} + y_{i}^{2}\right) = 145 (xi+yi)=5(2)+5(4)=30\Rightarrow \sum\left(x_{i} + y_{i}\right) = 5\left(2\right) + 5\left(4\right) = 30 Variance of combined data =110(xi2+yi2)(110(xi+yi))2= \frac{1}{10} \sum\left(x_{i}^{2} + y_{i}^{2}\right) - \left(\frac{1}{10} \sum \left(x_{i} + y_{i}\right)\right)^{2} =145109=112= \frac{145}{10} - 9 = \frac{11}{2}