Solveeit Logo

Question

Mathematics Question on Statistics

For two data sets, each of size 55, the variances are given to be 44 and 55 and the corresponding means are given to be 22 and 44, respectively. The variance of the combined data set is

A

112\frac{11}{2}

B

66

C

132\frac{13}{2}

D

52\frac{5}{2}

Answer

112\frac{11}{2}

Explanation

Solution

σx2=4\sigma^{2}_{x} = 4 σy2=5\sigma ^{2}_{y} = 5 xˉ=2\bar{x} = 2 yˉ=4\bar{y} = 4 xi5=2xi=10;yi=20\frac{\sum x_{i}}{5} = 2\quad\sum x_{i} = 10; \sum y_{i} = 20 σx2=(12xi2)(xˉ)2=15(yi2)16\sigma ^{2}_{x} = \left(\frac{1}{2}\sum x_{i}^{2}\right)-\left(\bar{x}\right)^{2} = \frac{1}{5}\left(\sum y_{i}^{2}\right) - 16 xi2=40\sum x_{i}^{2} = 40 yi2=105\sum y_{i}^{2} = 105 σz2=110(xi2+yi2)(xˉ+yˉ2)2=110(40+105)9=1459010=5510=112\sigma ^{2}_{z} = \frac{1}{10} \left(\sum x_{i}^{2}+\sum y_{i}^{2}\right) - \left(\frac{\bar{x}+\bar{y}}{2}\right)^{2} = \frac{1}{10} \left(40+105\right) -9 = \frac{145-90}{10} = \frac{55}{10} = \frac{11}{2}