Solveeit Logo

Question

Question: For traffic moving at \(60\mspace{6mu} km/hr\) along a circular track of radius \(0.1\mspace{6mu} km...

For traffic moving at 606mukm/hr60\mspace{6mu} km/hr along a circular track of radius 0.16mukm0.1\mspace{6mu} km, the correct angle of banking is

A

(60)20.1\frac{(60)^{2}}{0.1}

B

tan1[(50/3)2100×9.8]\tan^{- 1}\left\lbrack \frac{(50/3)^{2}}{100 \times 9.8} \right\rbrack

C

tan1[100×9.8(50/3)2]\tan^{- 1}\left\lbrack \frac{100 \times 9.8}{(50/3)^{2}} \right\rbrack

D

tan160×0.1×9.8\tan^{- 1}\sqrt{60 \times 0.1 \times 9.8}

Answer

tan1[(50/3)2100×9.8]\tan^{- 1}\left\lbrack \frac{(50/3)^{2}}{100 \times 9.8} \right\rbrack

Explanation

Solution

b)

Sol. v=60km/hr=503m/sv = 60km/hr = \frac{50}{3}m/s, r=0.1km=100m,r = 0.1km = 100m,

g=9.8m/s2g = 9.8m/s^{2} (given)

Angle of banking tanθ=v2rg\tan\theta = \frac{v^{2}}{rg}orθ=tan1(v2rg)\theta = \tan^{- 1}\left( \frac{v^{2}}{rg} \right)

=tan1[(50/3)2100×9.8]= \tan^{- 1}\left\lbrack \frac{(50/3)^{2}}{100 \times 9.8} \right\rbrack