Solveeit Logo

Question

Physics Question on Scalar Triple Product

For three vectors A=(xi6j2k),\vec{A} = (-xi - 6j - 2k), B=(i+4j+3k)\vec{B} = (-i + 4j + 3k) and C=(8ij+3k),\vec{C} = (-8i - j + 3k), if A(B×C)=0,\vec{A} \cdot (\vec{B} \times \vec{C}) = 0, then value of x is ___________.

Answer

First, compute B×C\vec{B} \times \vec{C}:

B×C=i^j^k^ 143 813\vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ -1 & 4 & 3 \\\ -8 & -1 & 3 \end{vmatrix}

B×C=i^(12+3)j^(3+24)+k^(1(32))\vec{B} \times \vec{C} = \hat{i}(12 + 3) - \hat{j}(-3 + 24) + \hat{k}(-1 - (-32))

B×C=15i^21j^+33k^\vec{B} \times \vec{C} = 15\hat{i} - 21\hat{j} + 33\hat{k}

Now, compute A(B×C)\vec{A} \cdot (\vec{B} \times \vec{C}):

A(B×C)=(xi^6j^2k^)(15i^21j^+33k^)\vec{A} \cdot (\vec{B} \times \vec{C}) = (-x\hat{i} - 6\hat{j} - 2\hat{k}) \cdot (15\hat{i} - 21\hat{j} + 33\hat{k})

A(B×C)=(x)(15)+(6)(21)+(2)(33)\vec{A} \cdot (\vec{B} \times \vec{C}) = (-x)(15) + (-6)(-21) + (-2)(33)

A(B×C)=15x+12666\vec{A} \cdot (\vec{B} \times \vec{C}) = -15x + 126 - 66

A(B×C)=15x+60\vec{A} \cdot (\vec{B} \times \vec{C}) = -15x + 60

Since A(B×C)=0\vec{A} \cdot (\vec{B} \times \vec{C}) = 0, we get:

15x+60=0-15x + 60 = 0

15x=6015x = 60

x=4x = 4