Question
Physics Question on Scalar Triple Product
For three vectors A=(−xi−6j−2k), B=(−i+4j+3k) and C=(−8i−j+3k), if A⋅(B×C)=0, then value of x is ___________.
Answer
First, compute B×C:
B×C=i^ −1 −8j^4−1k^33
B×C=i^(12+3)−j^(−3+24)+k^(−1−(−32))
B×C=15i^−21j^+33k^
Now, compute A⋅(B×C):
A⋅(B×C)=(−xi^−6j^−2k^)⋅(15i^−21j^+33k^)
A⋅(B×C)=(−x)(15)+(−6)(−21)+(−2)(33)
A⋅(B×C)=−15x+126−66
A⋅(B×C)=−15x+60
Since A⋅(B×C)=0, we get:
−15x+60=0
15x=60
x=4