Solveeit Logo

Question

Question: For three events A, B and C, P (Exactly one of A or B occurs) = P (Exactly one of B or C occurs) = P...

For three events A, B and C, P (Exactly one of A or B occurs) = P (Exactly one of B or C occurs) = P (Exactly one of C or A occurs) = 14\dfrac{1}{4} and P (All the three events occurs simultaneously) = 116\dfrac{1}{16}. Then the probability that at least one of the events occurs, is.
A. 732\dfrac{7}{32}
B. 716\dfrac{7}{16}
C. 764\dfrac{7}{64}
D. 316\dfrac{3}{16}

Explanation

Solution

Hint: We will be using the concept of probability to solve the problem. We will be using the formulae that if events are not mutually exclusive then the probability of event,
P(AB)=P(A)+P(B)P(AB)P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)

Complete step-by-step solution -
Now, we have been given that the probability that exactly one of A or B occurs P(AB)P(AB)=14P\left( A\cup B \right)-P\left( A\cap B \right)=\dfrac{1}{4}
Now, we know that,
P(AB)=P(A)+P(B)P(AB) P(A)+P(B)2P(AB)=14........(1) \begin{aligned} & P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \\\ & \Rightarrow P\left( A \right)+P\left( B \right)-2P\left( A\cap B \right)=\dfrac{1}{4}........\left( 1 \right) \\\ \end{aligned}
Now, we have the probability that exactly one of B or C occurs =P(BC)P(BC)=14=P\left( B\cup C \right)-P\left( B\cap C \right)=\dfrac{1}{4}.
Also, we know that,
P(BC)=P(B)+P(C)P(BC) P(B)+P(C)2P(BC)=14........(2) \begin{aligned} & P\left( B\cup C \right)=P\left( B \right)+P\left( C \right)-P\left( B\cap C \right) \\\ & \Rightarrow P\left( B \right)+P\left( C \right)-2P\left( B\cap C \right)=\dfrac{1}{4}........\left( 2 \right) \\\ \end{aligned}
Now, we have the probability that exactly one of C or A occurs =P(CA)P(CA)=14=P\left( C\cup A \right)-P\left( C\cap A \right)=\dfrac{1}{4}.
Also, we know that,
P(CA)=P(C)+P(A)P(CA) P(C)+P(A)2P(CA)=14........(3) \begin{aligned} & P\left( C\cup A \right)=P\left( C \right)+P\left( A \right)-P\left( C\cap A \right) \\\ & \Rightarrow P\left( C \right)+P\left( A \right)-2P\left( C\cap A \right)=\dfrac{1}{4}........\left( 3 \right) \\\ \end{aligned}
Now, we will add (1), (2) and (3). So, we have,
2(P(A)+P(B)+P(C))2(P(AB)+P(BC)+P(CA))=34 P(A)+P(B)+P(C)P(AB)+P(BC)+P(CA)=38..........(4) \begin{aligned} & 2\left( P\left( A \right)+P\left( B \right)+P\left( C \right) \right)-2\left( P\left( A\cap B \right)+P\left( B\cap C \right)+P\left( C\cap A \right) \right)=\dfrac{3}{4} \\\ & \Rightarrow P\left( A \right)+P\left( B \right)+P\left( C \right)-P\left( A\cap B \right)+P\left( B\cap C \right)+P\left( C\cap A \right)=\dfrac{3}{8}..........\left( 4 \right) \\\ \end{aligned}
Now, we have been given that the probability of all three events occur simultaneously is,
P(ABC)=116............(5)P\left( A\cap B\cap C \right)=\dfrac{1}{16}............\left( 5 \right)
Also, we know that the probability of at least one of the events A, B, C occurs is,
P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(CA)+P(ABC)P\left( A\cup B\cup C \right)=P\left( A \right)+P\left( B \right)+P\left( C \right)-P\left( A\cap B \right)-P\left( B\cap C \right)-P\left( C\cap A \right)+P\left( A\cap B\cap C \right)
Now, we will substitute the values from (4) and (5).
P(ABC)=38+116 =6+116 =716 \begin{aligned} & P\left( A\cup B\cup C \right)=\dfrac{3}{8}+\dfrac{1}{16} \\\ & =\dfrac{6+1}{16} \\\ & =\dfrac{7}{16} \\\ \end{aligned}
So, the correct option is (C).

Note: To solve these type of questions it is important to remember that if three events A, B, C are events then the probability that at least one of the events occur is,
P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(CA)+P(ABC)P\left( A\cup B\cup C \right)=P\left( A \right)+P\left( B \right)+P\left( C \right)-P\left( A\cap B \right)-P\left( B\cap C \right)-P\left( C\cap A \right)+P\left( A\cap B\cap C \right)