Solveeit Logo

Question

Question: For the zero order reaction \({\rm{A}} \to 2{\rm{B}}\), the rate constant is \(2 \times {10^{ - 6}}\...

For the zero order reaction A2B{\rm{A}} \to 2{\rm{B}}, the rate constant is 2×106  M.min12 \times {10^{ - 6}}\;{\rm{M}}{\rm{.mi}}{{\rm{n}}^{ - 1}}. The reaction is started with 10  M{\rm{10}}\;{\rm{M}} A.
(i). What will be the concentration of A after 22 days (ii) What is the initial half-life of the reaction.
(iii) In what time, the reaction will complete?

Explanation

Solution

We know that the half-life of the zero order reaction will decrease with the initial concentration of that reaction decreasing.

Complete step by step solution
Given the rate constant is 2×106  M.min12 \times {10^{ - 6}}\;{\rm{M}}{\rm{.mi}}{{\rm{n}}^{ - 1}}.
The concentration is 10  M{\rm{10}}\;{\rm{M}}.
The zero order reaction A2B{\rm{A}} \to 2{\rm{B}}.
(i). The formula for concentration of zero order reaction is shown below
Kt=a0at{{\rm{K}}_{\rm{t}}} = {{\rm{a}}_{\rm{0}}} - {{\rm{a}}_{\rm{t}}}
Where, Kt{{\rm{K}}_{\rm{t}}} is the rate constant with respect to time t, a0{{\rm{a}}_{\rm{0}}} is the initial concentration, and at{{\rm{a}}_{\rm{t}}} is the concentration at A.
In the question 2  days{\rm{2}}\;{\rm{days}} are given so, conversion of days to min is done as follows.
t=2days =42×24×60 =2880  min {\rm{t}} = {\rm{2days}}\\\ = 42 \times 24 \times 60\\\ = 2880\;{\rm{min}}
Substitute the value in the above equation as shown below.
2×106  M.min1×2880  min=10  Mat at=10  M0.00576  M =9.99424  M \Rightarrow 2 \times {10^{ - 6}}\;{\rm{M}}{\rm{.mi}}{{\rm{n}}^{ - 1}} \times 2880\;\min = \Rightarrow 10\;{\rm{M}} - {{\rm{a}}_{\rm{t}}}\\\ \Rightarrow {{\rm{a}}_{\rm{t}}} = 10\;{\rm{M}} - 0.00576\;{\rm{M}}\\\ = 9.99424\;{\rm{M}}
Hence, the concentration of A after 2  days{\rm{2}}\;{\rm{days}} is 9.99424  M9.99424\;{\rm{M}}.

(ii). For zero order reaction, the initial half-life equation is shown below.
at=a02 i.e.,t12=a02K {{\rm{a}}_{\rm{t}}} = \dfrac{{{{\rm{a}}_{\rm{0}}}}}{{\rm{2}}}\\\ {\rm{i}}{\rm{.e}}{\rm{.,}}{{\rm{t}}_{\frac{{\rm{1}}}{{\rm{2}}}}} = \dfrac{{{{\rm{a}}_{\rm{0}}}}}{{{\rm{2K}}}}
Where, a0{{\rm{a}}_{\rm{0}}} is the initial concentration, t12{{\rm{t}}_{\frac{{\rm{1}}}{{\rm{2}}}}} is the half-life for zero order reaction, K{\rm{K}} is the rate constant.
Substitute the respective values in the above equation.
t12=102×1×106 =2.5×106  min \Rightarrow {{\rm{t}}_{\frac{{\rm{1}}}{{\rm{2}}}}} = \dfrac{{{\rm{10}}}}{{{\rm{2}} \times {\rm{1}} \times {\rm{1}}{{\rm{0}}^{ - 6}}}}\\\ = 2.5 \times {10^6}\;{\rm{min}}
Hence, the half-life for zero order reaction is 2.5×106  min2.5 \times {10^6}\;{\rm{min}}.

(iii). The reaction will be completed in which time can be calculated by using the formula as shown below.
t=a0K{\rm{t}} = \dfrac{{{{\rm{a}}_{\rm{0}}}}}{{\rm{K}}}
Where t is the time in min, K is the rate constant and a0{{\rm{a}}_{\rm{0}}} is the initial concentration.
Substitute the respective values in the above equation. We get,
t=102×106 =5×106  min {\rm{t}} = \dfrac{{{\rm{10}}}}{{2 \times {{10}^{ - 6}}}}\\\ = 5 \times {10^6}\;{\rm{min}}
Hence, the reaction will complete in 5×106  min5 \times {10^6}\;{\rm{min}}.

Note:
The main application of rate of reaction generally represents or shows the rate of production which was used in our daily life.