Solveeit Logo

Question

Question: For the strong electrolytes \({{NaOH,NaCl}}\) and \({{BaC}}{{{l}}_2}\), the molar ionic conductances...

For the strong electrolytes NaOH,NaCl{{NaOH,NaCl}} and BaCl2{{BaC}}{{{l}}_2}, the molar ionic conductances at infinite dilution are 248×104,126.5×104248 \times {10^{ - 4}},126.5 \times {10^{ - 4}} and 280.0×104s.m2.mol1280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} respectively. Calculate Λm{\Lambda _{{m}}}^ \circ for Ba(OH)2{{Ba}}{\left( {{{OH}}} \right)_2}.

Explanation

Solution

Electrolytes are the substances whose solution in water conducts electric current. Conduction takes place by the movement of ions. Kohlrausch’s law is based on the limiting molar conductivity of an electrolyte.

Complete step by step answer:
Molar conductivity is the conductive power of all the ions produced by one mole of an electrolyte in the given solution. Kohlrausch’s law gives the empirical relationship between molar conductivity and concentration of strong electrolytes. Limiting molar conductivity is due to the migration of cations in one direction and anions in the other under very dilute conditions. The Kohlrausch’s law is expressed in the formula given below:
Λm=υ+Λ++υΛ{\Lambda _{{m}}}^ \circ = {\upsilon _ + }{\Lambda _ + }^ \circ + {\upsilon _ - }{\Lambda _ - }^ \circ , where Λ+,Λ{\Lambda _ + }^ \circ ,{\Lambda _ - }^ \circ are the ionic conductances of the cations and anions at infinite dilution.
It is given that molar ionic conductance of NaOH{{NaOH}}, Λm(NaOH)=248×104s.m2.mol1{\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}
Molar ionic conductance of NaCl{{NaCl}}, Λm(NaCl)=126.5×104s.m2.mol1{\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = 126.5 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}
Molar ionic conductance of BaCl2{{BaC}}{{{l}}_2}, Λm(BaCl2)=280.0×104s.m2.mol1{\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}
Molar ionic conductance of NaOH{{NaOH}} can be expressed as Λm(NaOH)=Λm(Na+)+Λm(OH){\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)
Molar ionic conductance of NaCl{{NaCl}} can be expressed as Λm(NaCl)=Λm(Na+)+Λm(Cl){\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + {\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)
Molar ionic conductance of BaCl2{{BaC}}{{{l}}_2} can be expressed as Λm(BaCl2)=Λm(Ba2+)+2Λm(Cl){\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) = {\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^{2 + }}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)
The reaction with respect to the formation of Ba(OH)2{{Ba}}{\left( {{{OH}}} \right)_2} is given below:
BaCl2+2NaOHBa(OH)2+2NaCl{{BaC}}{{{l}}_2} + 2{{NaOH}} \to {{Ba}}{\left( {{{OH}}} \right)_2} + 2{{NaCl}}
Thus molar ionic conductance of Ba(OH)2{{Ba}}{\left( {{{OH}}} \right)_2} can be expressed as:
Λm[Ba(OH)2]=Λm(BaCl2)+2Λm(NaOH)2Λm(NaCl){\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = {\Lambda _{{m}}}^ \circ \left( {{{BaC}}{{{l}}_2}} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{NaOH}}} \right) - 2{\Lambda _{{m}}}^ \circ \left( {{{NaCl}}} \right)
Λm[Ba(OH)2]=[Λm(Ba+)+2Λm(Cl)]+[2Λm(Na+)+2Λm(OH)][2Λm(Na+)+2Λm(Cl)]{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right] - \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{N}}{{{a}}^ + }} \right) + 2{\Lambda _{{m}}}^ \circ \left( {{{C}}{{{l}}^ - }} \right)} \right]
On simplification, we get
Λm[Ba(OH)2]=[Λm(Ba+)]+[2Λm(OH)]{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = \left[ {{\Lambda _{{m}}}^ \circ \left( {{{B}}{{{a}}^ + }} \right)} \right] + \left[ {2{\Lambda _{{m}}}^ \circ \left( {{{O}}{{{H}}^ - }} \right)} \right]
Substituting the values, we get
Λm[Ba(OH)2]=280.0×104s.m2.mol1+2×248×104s.m2.mol1(2×126.5s.m2.mol1){\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 280.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} + 2 \times 248 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - \left( {2 \times 126.5{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}} \right)
Solving,
Λm[Ba(OH)2]=776.0×104s.m2.mol1253.0×104s.m2.mol1=523×104s.m2.mol1{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 776.0 \times {10^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} - {{253}}{{.0}} \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}} = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}
Molar conductance of Ba(OH)2{{Ba}}{\left( {{{OH}}} \right)_2}, Λm[Ba(OH)2]=523×104s.m2.mol1{\Lambda _{{m}}}^ \circ \left[ {{{Ba}}{{\left( {{{OH}}} \right)}_2}} \right] = 523 \times {{1}}{{{0}}^{ - 4}}{{s}}.{{{m}}^2}.{{mo}}{{{l}}^{ - 1}}

Note: Specific conductance is the ability of an electrolyte solution to conduct electricity. On dilution, the specific conductivity decreases. Equivalent and molar conductance increase with dilution and reaches a maximum value. The conductance of all electrolytes increases with temperature. Kohlrausch’s law can be applied for calculating the degree of dissociation of a weak electrolyte. It can also be used for finding the equivalent conductivity of weak electrolytes.