Solveeit Logo

Question

Question: For the series $L-C-R$ circuit as shown in figure, find the heat developed in $80$ $s$ and amplitude...

For the series LCRL-C-R circuit as shown in figure, find the heat developed in 8080 ss and amplitude of wattless current ii. R=4ΩR=4\Omega XL=7ΩX_L=7\Omega Xc=4ΩX_c=4\Omega V=25sin(100πt+π/2)V = 25 \sin(100\pi t + \pi/2)

A

4000 J, 3 A

B

8000 J, 3 A

C

4000 J, 4 A

D

8000 J, 5 A

Answer

4000 J, 3 A

Explanation

Solution

  1. Calculate the Net Reactance (XX): X=XLXC=7Ω4Ω=3ΩX = X_L - X_C = 7 \Omega - 4 \Omega = 3 \Omega.

  2. Calculate the Impedance (ZZ): Z=R2+X2=(4Ω)2+(3Ω)2=16+9=25=5ΩZ = \sqrt{R^2 + X^2} = \sqrt{(4 \Omega)^2 + (3 \Omega)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \Omega.

  3. Calculate the Amplitude of the Current (I0I_0): From the voltage equation V=25sin(100πt+π/2)V = 25 \sin(100\pi t + \pi/2), the amplitude of the voltage is V0=25V_0 = 25 V. I0=V0Z=25 V5Ω=5I_0 = \frac{V_0}{Z} = \frac{25 \text{ V}}{5 \Omega} = 5 A.

  4. Calculate the Heat Developed (HH) in 80 seconds: The RMS current is Irms=I02=52I_{rms} = \frac{I_0}{\sqrt{2}} = \frac{5}{\sqrt{2}} A. The heat developed is given by H=Irms2RtH = I_{rms}^2 R t. H=(52)2×4Ω×80 s=252×4×80=25×2×80=4000H = \left(\frac{5}{\sqrt{2}}\right)^2 \times 4 \Omega \times 80 \text{ s} = \frac{25}{2} \times 4 \times 80 = 25 \times 2 \times 80 = 4000 J.

  5. Calculate the Amplitude of the Wattless Current (IwattlessI_{wattless}): The phase angle ϕ\phi is given by tanϕ=XR=3Ω4Ω=34\tan \phi = \frac{X}{R} = \frac{3 \Omega}{4 \Omega} = \frac{3}{4}. From this, we can determine sinϕ=35\sin \phi = \frac{3}{5}. The amplitude of the wattless current is Iwattless=I0sinϕI_{wattless} = I_0 \sin \phi. Iwattless=5 A×35=3I_{wattless} = 5 \text{ A} \times \frac{3}{5} = 3 A.

Therefore, the heat developed in 80 s is 4000 J, and the amplitude of the wattless current is 3 A.