Solveeit Logo

Question

Question: For the reaction, X(s) $\rightleftharpoons$ Y(s) + Z (g), the plot of $ln \frac{p_z}{p^{\theta}}$ ve...

For the reaction, X(s) \rightleftharpoons Y(s) + Z (g), the plot of lnpzpθln \frac{p_z}{p^{\theta}} versus 104T\frac{10^4}{T} is given below (in solid line), where pzp_z is the pressure (in bar) of the Z at temperature T and pθ=1p^{\theta} = 1 bar.

[JEE 2021]

(Given, d(lnk)d(1T)=ΔHθR\frac{d(lnk)}{d(\frac{1}{T})} = -\frac{\Delta H^{\theta}}{R}, where the equiliberium constant, K=pzpθK = \frac{p_z}{p^{\theta}} and the gas constant, R=8.314R = 8.314 JK1^{-1}mol1^{-1})

Answer
  1. 166.28 kJ mol1^{-1}14. 141.34 JK1^{-1} mol1^{-1}
Explanation

Solution

  1. The slope of the plot of lnK\ln K vs 104T\frac{10^4}{T} is m=ΔHθ104Rm = -\frac{\Delta H^{\theta}}{10^4 R}. From the graph, m=2m=-2. Thus, ΔHθ=m104R=(2)1048.314=166280\Delta H^{\theta} = -m \cdot 10^4 \cdot R = -(-2) \cdot 10^4 \cdot 8.314 = 166280 J/mol =166.28= 166.28 kJ/mol.

  2. The y-intercept of the plot of lnK\ln K vs 104T\frac{10^4}{T} corresponds to ΔSθR\frac{\Delta S^{\theta}}{R}. The line equation is y=2x+17y = -2x + 17, so the intercept is 1717. Thus, ΔSθR=17\frac{\Delta S^{\theta}}{R} = 17, which gives ΔSθ=17R=178.314=141.338\Delta S^{\theta} = 17 \cdot R = 17 \cdot 8.314 = 141.338 JK1^{-1}mol1^{-1}.