Solveeit Logo

Question

Question: For the reaction, \({\text{3}}{{\text{N}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right){\text{ +...

For the reaction,
3N2O(g) + 2NH3(g)4N2(g)+3H2O(g){\text{3}}{{\text{N}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right){\text{ + 2N}}{{\text{H}}_{\text{3}}}\left( {\text{g}} \right) \to 4{{\text{N}}_{\text{2}}}\left( {\text{g}} \right) + {\text{3}}{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right) ; ΔH0=879.6kJmol1\Delta {{\text{H}}^0} = - 879.6{\text{kJmo}}{{\text{l}}^{ - 1}}
If ΔH0f[NH3(g)]=45.9kJmol1\Delta {{\text{H}}^0}_{\text{f}}\left[ {{\text{N}}{{\text{H}}_{\text{3}}}\left( {\text{g}} \right)} \right] = - 45.9{\text{kJmo}}{{\text{l}}^{ - 1}} ; ΔH0f[H2O(g)]=241.8kJmol1\Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{H}}_2}{\text{O}}\left( {\text{g}} \right)} \right] = - 241.8{\text{kJmo}}{{\text{l}}^{ - 1}}
Then ΔH0f[N2O(g)]\Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{N}}_2}{\text{O}}\left( {\text{g}} \right)} \right] will be:
A.+246kJ + 246{\text{kJ}}
B.+82kJ + 82{\text{kJ}}
C. - 82kJ{\text{ - 82kJ}}
D.246kJ - 246{\text{kJ}}

Explanation

Solution

The standard enthalpy or heat of formation refers to the change in enthalpy or heat when one mole of a substrate is formed from its elements in their standard state.
The standard enthalpy of any reaction is considered to be equal to the difference between the standard enthalpy of formation values of all the products and the standard enthalpy of formation values of all the reactants.

Complete step by step answer:
The symbol ΔH0f\Delta {{\text{H}}^0}_{\text{f}} is generally used to denote the standard enthalpy or heat of formation. For elements, it is considered to be equal to zero.
If ΣΔH0f(products)\Sigma \Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left( {{\text{products}}} \right) represents the enthalpy of formation of all the products and ΣΔH0f(reactants)\Sigma \Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left( {{\text{reactants}}} \right) represents the enthalpy of formation of all the reactants, then the standard enthalpy of a reaction is given by the mathematical expression:
ΔH0=ΣΔH0f(products)ΣΔH0f(reactants)\Delta {{\text{H}}^{\text{0}}} = \Sigma \Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left( {{\text{products}}} \right) - \Sigma \Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left( {{\text{reactants}}} \right)
Thus, we can determine the enthalpy of reactions by using the enthalpy of formation values.
Now, according to the given question, the enthalpy of formation of ammonia is 45.9kJmol1 - 45.9{\text{kJmo}}{{\text{l}}^{ - 1}} and the enthalpy of formation of water is 241.8kJmol1 - 241.8{\text{kJmo}}{{\text{l}}^{ - 1}} . The enthalpy change of the reaction is also given to be 879.6kJmol1 - 879.6{\text{kJmo}}{{\text{l}}^{ - 1}} . We need to find out the enthalpy of formation of nitrous oxide.
The given reaction is 3N2O(g) + 2NH3(g)4N2(g)+3H2O(g){\text{3}}{{\text{N}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right){\text{ + 2N}}{{\text{H}}_{\text{3}}}\left( {\text{g}} \right) \to 4{{\text{N}}_{\text{2}}}\left( {\text{g}} \right) + {\text{3}}{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right) .
In this reaction, there are 3 moles of nitrous oxide, 2 moles of ammonia, 4 moles of nitrogen and 3 moles of water.
So, we have:
ΔH0=4ΔH0f[N2(g)]+3ΔH0f[H2O(g)]2ΔH0f[NH3(g)]3ΔH0f[N2O(g)]\Delta {{\text{H}}^{\text{0}}} = 4\Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left[ {{{\text{N}}_{\text{2}}}\left( {\text{g}} \right)} \right] + 3\Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left[ {{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right)} \right] - 2\Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left[ {{\text{N}}{{\text{H}}_{\text{3}}}\left( {\text{g}} \right)} \right] - 3\Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{N}}_2}{\text{O}}\left( {\text{g}} \right)} \right]
ΔH0f[N2(g)]\Delta {{\text{H}}^{\text{0}}}_{\text{f}}\left[ {{{\text{N}}_{\text{2}}}\left( {\text{g}} \right)} \right] is equal to zero as nitrogen gas is an element in standard state.
Substitute all the values and we will have
\-879.6=4×0+3×(241.8)2×(45.9)3ΔH0f[N2O(g)] ΔH0f[N2O(g)]=879.6725.4+91.83 ΔH0f[N2O(g)]=82kJmol - 1  \- 879.6 = 4 \times 0 + 3 \times \left( { - 241.8} \right) - 2 \times \left( { - 45.9} \right) - 3\Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{N}}_2}{\text{O}}\left( {\text{g}} \right)} \right] \\\ \Rightarrow \Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{N}}_2}{\text{O}}\left( {\text{g}} \right)} \right] = \dfrac{{879.6 - 725.4 + 91.8}}{3} \\\ \Rightarrow \Delta {{\text{H}}^0}_{\text{f}}\left[ {{{\text{N}}_2}{\text{O}}\left( {\text{g}} \right)} \right] = 82{\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}} \\\

Hence, the correct option is B.

Note:
Some other common kinds of enthalpy of reactions are enthalpy of combustion and enthalpy of hydration.
The term ‘enthalpy of combustion’ refers to the enthalpy change when the complete combustion of one mole of a substance. For example, the enthalpy of combustion of carbon is found to be 393.5kJ/mol - 393.5{\text{kJ/mol}} .
C(s) + O2(g)CO2(g);ΔH=393.5kJ/mol{\text{C}}\left( {\text{s}} \right){\text{ + }}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right);\Delta {\text{H}} = - 393.5{\text{kJ/mol}}
The enthalpy of hydration refers to the enthalpy change when one mole of a partially hydrated or anhydrous salt combines with water to give its hydrate. For example:
CuSO4(s) + 5H2O(l)CuSO4.5H2O(s);ΔH=78.2kJ/mol{\text{CuS}}{{\text{O}}_4}\left( {\text{s}} \right){\text{ + 5}}{{\text{H}}_2}{\text{O}}\left( {\text{l}} \right) \to {\text{CuS}}{{\text{O}}_4}{\text{.5}}{{\text{H}}_2}{\text{O}}\left( {\text{s}} \right);\Delta {\text{H}} = - 78.2{\text{kJ/mol}}