Question
Question: For the reaction SO2(g) + 1/2 O2(g) SO3(g) H°298 = –98.32 kJ/mole, S°298 = –95.0 J/K/mole. Find th...
For the reaction SO2(g) + 1/2 O2(g) SO3(g) H°298 = –98.32 kJ/mole, S°298 = –95.0 J/K/mole. Find the Kp for this reaction at 298 K
1.30 x 10^12
1.30 x 10^-12
6.50 x 10^11
6.50 x 10^-11
1.30 x 10^12
Solution
The relationship between the standard Gibbs free energy change (ΔG∘) and the equilibrium constant (Kp) is given by: ΔG∘=−RTlnKp The standard Gibbs free energy change can be calculated from the standard enthalpy and entropy changes using the Gibbs-Helmholtz equation: ΔG∘=ΔH∘−TΔS∘
Step 1: Convert units to be consistent. Given values: ΔH298∘=−98.32 kJ/mole ΔS298∘=−95.0 J/K/mole T=298 K Ideal gas constant R=8.314 J/K/mole.
Convert ΔH∘ to Joules: ΔH298∘=−98.32 kJ/mole×1000 J/kJ=−98320 J/mole
Step 2: Calculate the standard Gibbs free energy change (ΔG∘). ΔG298∘=ΔH298∘−TΔS298∘ ΔG298∘=(−98320 J/mole)−(298 K)×(−95.0 J/K/mole) ΔG298∘=−98320 J/mole+28310 J/mole ΔG298∘=−70010 J/mole
Step 3: Calculate the equilibrium constant (Kp). lnKp=RT−ΔG∘ lnKp=8.314 J/K/mole×298 K−(−70010 J/mole) lnKp=2477.572 J/mole70010 J/mole lnKp≈28.2570
To find Kp: Kp=e28.2570 Kp≈1.301×1012
Rounding to three significant figures, Kp≈1.30×1012.