Solveeit Logo

Question

Question: For the reaction SO2(g) + 1/2 O2(g) SO3(g) H°298 = –98.32 kJ/mole, S°298 = –95.0 J/K/mole. Find th...

For the reaction SO2(g) + 1/2 O2(g) SO3(g) H°298 = –98.32 kJ/mole, S°298 = –95.0 J/K/mole. Find the Kp for this reaction at 298 K

A

1.30 x 10^12

B

1.30 x 10^-12

C

6.50 x 10^11

D

6.50 x 10^-11

Answer

1.30 x 10^12

Explanation

Solution

The relationship between the standard Gibbs free energy change (ΔG\Delta G^\circ) and the equilibrium constant (KpK_p) is given by: ΔG=RTlnKp\Delta G^\circ = -RT \ln K_p The standard Gibbs free energy change can be calculated from the standard enthalpy and entropy changes using the Gibbs-Helmholtz equation: ΔG=ΔHTΔS\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ

Step 1: Convert units to be consistent. Given values: ΔH298=98.32 kJ/mole\Delta H^\circ_{298} = -98.32 \text{ kJ/mole} ΔS298=95.0 J/K/mole\Delta S^\circ_{298} = -95.0 \text{ J/K/mole} T=298 KT = 298 \text{ K} Ideal gas constant R=8.314 J/K/moleR = 8.314 \text{ J/K/mole}.

Convert ΔH\Delta H^\circ to Joules: ΔH298=98.32 kJ/mole×1000 J/kJ=98320 J/mole\Delta H^\circ_{298} = -98.32 \text{ kJ/mole} \times 1000 \text{ J/kJ} = -98320 \text{ J/mole}

Step 2: Calculate the standard Gibbs free energy change (ΔG\Delta G^\circ). ΔG298=ΔH298TΔS298\Delta G^\circ_{298} = \Delta H^\circ_{298} - T\Delta S^\circ_{298} ΔG298=(98320 J/mole)(298 K)×(95.0 J/K/mole)\Delta G^\circ_{298} = (-98320 \text{ J/mole}) - (298 \text{ K}) \times (-95.0 \text{ J/K/mole}) ΔG298=98320 J/mole+28310 J/mole\Delta G^\circ_{298} = -98320 \text{ J/mole} + 28310 \text{ J/mole} ΔG298=70010 J/mole\Delta G^\circ_{298} = -70010 \text{ J/mole}

Step 3: Calculate the equilibrium constant (KpK_p). lnKp=ΔGRT\ln K_p = \frac{-\Delta G^\circ}{RT} lnKp=(70010 J/mole)8.314 J/K/mole×298 K\ln K_p = \frac{-(-70010 \text{ J/mole})}{8.314 \text{ J/K/mole} \times 298 \text{ K}} lnKp=70010 J/mole2477.572 J/mole\ln K_p = \frac{70010 \text{ J/mole}}{2477.572 \text{ J/mole}} lnKp28.2570\ln K_p \approx 28.2570

To find KpK_p: Kp=e28.2570K_p = e^{28.2570} Kp1.301×1012K_p \approx 1.301 \times 10^{12}

Rounding to three significant figures, Kp1.30×1012K_p \approx 1.30 \times 10^{12}.