Solveeit Logo

Question

Chemistry Question on Rate of a Chemical Reaction

For the reaction N2+3H22NH3N_{2}+3H_{2} \rightarrow 2NH_{3} if Δ[NH3]Δt=2×104moll1s1,\frac{\Delta\left[NH_{3}\right]}{\Delta t}=2\times10^{-4}\,mol\,l^{-1}s^{-1}, then value of Δ[H2]Δt\frac{-\Delta\left[H_{2}\right]}{\Delta t} would be

A

1104molL1s11 � 10^{-4}\, mol\, L^{-1}s^{-1}

B

3104molL1s13 � 10^{-4}\, mol\, L^{-1}s^{-1}

C

4104molL1s14 � 10^{-4}\, mol\, L^{-1}s^{-1}

D

6104molL1s16 � 10^{-4}\, mol\, L^{-1}s^{-1}

Answer

3104molL1s13 � 10^{-4}\, mol\, L^{-1}s^{-1}

Explanation

Solution

N2+3H22NH3N_{2}+3H_{2} \rightarrow 2NH_{3}
[N2]Δt=13Δ[H2]Δt=12Δ[NH3]Δt\frac{-\left[N_{2}\right]}{\Delta t}=\frac{1}{3} \frac{\Delta\left[H_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta\left[NH_{3}\right]}{\Delta t}
Δ[H2]Δt=32×Δ[NH3]Δt=32×2×104\therefore \frac{-\Delta\left[H_{2}\right]}{\Delta t}=\frac{3}{2}\times\frac{\Delta\left[NH_{3}\right]}{\Delta t}=\frac{3}{2}\times2\times10^{-4}
=3×104molL1S1=3\times10^{-4}\,mol\,L^{-1}S^{-1}